论文标题

Alba:视频对象细分的增强学习

ALBA : Reinforcement Learning for Video Object Segmentation

论文作者

Gowda, Shreyank N, Eustratiadis, Panagiotis, Hospedales, Timothy, Sevilla-Lara, Laura

论文摘要

我们考虑了零击视频对象细分(VOS)的具有挑战性的问题。也就是说,在没有任何手动初始化的情况下,将视频中的多个移动对象进行分割和跟踪。我们通过利用对象建议并在时空和时间上分组分组来将其视为分组问题。我们提出了一个网络体系结构,用于漫步执行建议选择和联合分组。至关重要的是,我们展示了如何通过增强学习来训练该网络,以便学会执行最佳的非侧层序列,以分组决策以细分整个视频。与标准监督技术不同,这也使我们能够直接优化用于评估VOS的非差异基于基于重叠的指标。我们表明,我们称之为ALBA的提议方法胜过三个基准的先前状态:Davis 2017 [2],FBMS [20]和YouTube-VOS [27]。

We consider the challenging problem of zero-shot video object segmentation (VOS). That is, segmenting and tracking multiple moving objects within a video fully automatically, without any manual initialization. We treat this as a grouping problem by exploiting object proposals and making a joint inference about grouping over both space and time. We propose a network architecture for tractably performing proposal selection and joint grouping. Crucially, we then show how to train this network with reinforcement learning so that it learns to perform the optimal non-myopic sequence of grouping decisions to segment the whole video. Unlike standard supervised techniques, this also enables us to directly optimize for the non-differentiable overlap-based metrics used to evaluate VOS. We show that the proposed method, which we call ALBA outperforms the previous stateof-the-art on three benchmarks: DAVIS 2017 [2], FBMS [20] and Youtube-VOS [27].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源