论文标题

不同的恒星光谱对潮汐锁定的地球外球星的气候的含义

Implications of different stellar spectra for the climate of tidally-locked Earth-like exoplanets

论文作者

Eager, Jake K., Reichelt, David J., Mayne, Nathan J., Lambert, F. Hugo, Sergeev, Denis E., Ridgway, Robert J., Manners, James, Boutle, Ian A., Lenton, Timothy M., Kohary, Krisztian

论文摘要

大多数潜在的可居住系外行星都检测到轨道恒星比太阳更凉,因此,在更长的波长下,恒星频谱比地球上的那个事件受到刺激。在这里,我们介绍了一组潮汐锁骨的陆地行星的模拟,这些行星绕着三个不同的宿主恒星隔离,以隔离恒星光谱对模拟气候的影响。具体而言,我们基于trappist-1e进行模拟,采用类似地球的气氛,并在理想化的“ Aqua-wellanet”配置中使用英国Met Office Unified模型。虽然保持行星参数的恒定,包括总恒星通量(900 W/m $^2 $)和轨道周期(6.10地球天),但我们比较模拟之间的结果,其中恒星光谱是静态trappist-1的模拟,Proxima Centauri和太阳。与表面相比,对流层直接吸收的入射恒星辐射的模拟恒星的比例增加了。反过来,这导致了反对对流的稳定性的提高,日期降低了整体云覆盖率(减少散射),从而导致表面温度升高。对流层的直接加热增加还导致从白天到夜边的热传输效率更高,因此降低了昼夜温度对比度。我们推断,与给定的行星旋转速率相比,与类似的行星相比,轨道射线半径较高的行星在轨道半径增加时可能会允许在增加轨道半径时可居住的云覆盖范围较低的行星。

The majority of potentially habitable exoplanets detected orbit stars cooler than the Sun, and therefore are irradiated by a stellar spectrum peaking at longer wavelengths than that incident on Earth. Here, we present results from a set of simulations of tidally-locked terrestrial planets orbiting three different host stars to isolate the effect of the stellar spectra on the simulated climate. Specifically, we perform simulations based on TRAPPIST-1e, adopting an Earth-like atmosphere and using the UK Met Office Unified Model in an idealised 'aqua-planet' configuration. Whilst holding the planetary parameters constant, including the total stellar flux (900 W/m$^2$) and orbital period (6.10 Earth days), we compare results between simulations where the stellar spectrum is that of a quiescent TRAPPIST-1, Proxima Centauri and the Sun. The simulations with cooler host stars had an increased proportion of incident stellar radiation absorbed directly by the troposphere compared to the surface. This, in turn, led to an increase in the stability against convection, a reduction in overall cloud coverage on the dayside (reducing scattering), leading to warmer surface temperatures. The increased direct heating of the troposphere also led to more efficient heat transport from the dayside to the nightside and, therefore, a reduced day-night temperature contrast. We inferred that planets with an Earth-like atmosphere orbiting cooler stars had lower dayside cloud coverage, potentially allowing habitable conditions at increased orbital radii, compared to similar planets orbiting hotter stars for a given planetary rotation rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源