论文标题
从稀疏Lyman- $α$森林数据的层次结构级别的推断方法进行重建
A hierarchical field-level inference approach to reconstruction from sparse Lyman-$α$ forest data
论文作者
论文摘要
我们解决了从莱曼$α$ forest的一维一维的类星体吸收光谱中推断三维物质分布的问题。我们使用贝叶斯远期建模方法,专注于将动态模型扩展到红移空间类星体吸收率的完全自洽的层次层面级别的预测。我们的现场级别方法取决于最近开发的拉格朗日扰动理论(LPT)的半经典类似物,该理论改善了LPT的噪声问题和插值要求。此外,它允许将光学深度到红移空间进行显然保守的映射。此外,这个新的动力学模型自然引入了粗粒度,我们利用了该量表,以使用模拟退火来加速马尔可夫链蒙特卡洛(MCMC)采样器。通过逐渐降低正向模型的有效温度,我们能够在采样器对较小的较小尺度的越来越大的空间敏感之前首先在大空间尺度上收敛。我们在速度和噪声属性方面证明了这种现场级别方法的优势,而不是使用LPT作为正向模型,并且,使用模拟数据,我们验证了其性能以重建三维原始原始扰动和从稀疏的类星体视线中的物质分布。
We address the problem of inferring the three-dimensional matter distribution from a sparse set of one-dimensional quasar absorption spectra of the Lyman-$α$ forest. Using a Bayesian forward modelling approach, we focus on extending the dynamical model to a fully self-consistent hierarchical field-level prediction of redshift-space quasar absorption sightlines. Our field-level approach rests on a recently developed semiclassical analogue to Lagrangian perturbation theory (LPT), which improves over noise problems and interpolation requirements of LPT. It furthermore allows for a manifestly conservative mapping of the optical depth to redshift space. In addition, this new dynamical model naturally introduces a coarse-graining scale, which we exploited to accelerate the Markov chain Monte-Carlo (MCMC) sampler using simulated annealing. By gradually reducing the effective temperature of the forward model, we were able to allow it to first converge on large spatial scales before the sampler became sensitive to the increasingly larger space of smaller scales. We demonstrate the advantages, in terms of speed and noise properties, of this field-level approach over using LPT as a forward model, and, using mock data, we validated its performance to reconstruct three-dimensional primordial perturbations and matter distribution from sparse quasar sightlines.