论文标题

从$ _ {0.5} $ in $ _ {0.5} $ _ {0.5} $ p/gaas/ge triple-juntion Solar cell

Ab initio electronic stopping power for protons in Ga$_{0.5}$In$_{0.5}$P/GaAs/Ge triple-junction solar cells for space applications

论文作者

Koval, Natalia E., Da Pieve, Fabiana, Artacho, Emilio

论文摘要

首先,由太阳能电池板在太空中的辐射损坏的启发,首先,提出了蒙特卡洛颗粒传输模拟的结果,以质子对三个结式GA $ _ {0.5} $ $ _ {0.5} $ _ {0.5} $ p/gaAs/ge太阳能电池的影响,显示出能量功能的细胞中的Proton弹丸渗透。其次是通过实时依赖时间依赖性密度功能理论(RT-TDDFT)计算的相关速度下在相关速度下的质子对质子的电子停止功率进行系统的{\ it i i i i i i i i i i}研究。发现电子停止功率显着取决于不同的通道条件,这将影响低速损伤预测,并从路径沿路径的影响参数和电子密度来理解。此外,我们探讨了多层结构层之间界面对质子能量损失的影响,以及晶格匹配的太阳能电池中应变的影响。与主要体积效应相比,两种效应都很小。已经发现界面能量损失会随着质子速度的降低而增加,在一种情况下,有有效的界面能量增益。

Motivated by the radiation damage of solar panels in space, firstly, the results of Monte Carlo particle transport simulations are presented for proton impact on triple-junction Ga$_{0.5}$In$_{0.5}$P/GaAs/Ge solar cells, showing the proton projectile penetration in the cells as a function of energy. It is followed by a systematic {\it ab initio} investigation of the electronic stopping power for protons in different layers of the cell at the relevant velocities via real-time time-dependent density functional theory (RT-TDDFT) calculations. The electronic stopping power is found to depend significantly on different channeling conditions, which should affect the low velocity damage predictions, and which are understood in terms of impact parameter and electron density along the path. Additionally, we explore the effect of the interface between the layers of the multilayer structure on the energy loss of a proton, along with the effect of strain in the lattice-matched solar cell. Both effects are found to be small compared with the main bulk effect. The interface energy loss has been found to increase with decreasing proton velocity, and in one case, there is an effective interface energy gain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源