论文标题

通过Witten的共轭之间的无挫败模型之间的相互关系

Interrelations among frustration-free models via Witten's conjugation

论文作者

Wouters, Jurriaan, Katsura, Hosho, Schuricht, Dirk

论文摘要

我们应用Witten的共轭论点[Nucl。物理。 b 202,253(1982)]旋转链,它使我们能够从已知结果中得出无挫败感的系统及其确切的基态。我们特别关注$ \ Mathbb {z} _p $ - 对称模型,而Kitaev和Peschel-轴向轴向下一个最邻近的Ising(Annni)链的Emery Line是最简单的示例。该方法使我们能够对待两个$ \ mathbb {z} _3 $ -Invariant无挫败parafermion链,该链条最近由Iemini等人衍生而成。 [物理。莱特牧师。 118,170402(2017)]和Mahyaeh和Ardonne [Phys。 Rev. B 98,245104(2018)]在统一框架中。我们得出了其他几种无挫败模型及其确切的基础状态,包括$ \ mathbb {z} _4 $ - 和$ \ Mathbb {z} _6 $ - symmore-Symmemetric Preemertric ni annni链。

We apply Witten's conjugation argument [Nucl. Phys. B 202, 253 (1982)] to spin chains, where it allows us to derive frustration-free systems and their exact ground states from known results. We particularly focus on $\mathbb{Z}_p$-symmetric models, with the Kitaev and Peschel--Emery line of the axial next-nearest neighbour Ising (ANNNI) chain being the simplest examples. The approach allows us to treat two $\mathbb{Z}_3$-invariant frustration-free parafermion chains, recently derived by Iemini et al. [Phys. Rev. Lett. 118, 170402 (2017)] and Mahyaeh and Ardonne [Phys. Rev. B 98, 245104 (2018)], respectively, in a unified framework. We derive several other frustration-free models and their exact ground states, including $\mathbb{Z}_4$- and $\mathbb{Z}_6$-symmetric generalisations of the frustration-free ANNNI chain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源