论文标题
第六次Parelevé方程的差异到差键单向的差异
Degeneration from difference to differential Okamoto spaces for the sixth Painlevé equation
论文作者
论文摘要
在当前的论文中,我们研究了众所周知的painlevévi微分方程的Jimbo和Sakai引入的$ Q $ - analogue。我们解释了如何从Schlesinger方程式的$ Q $ -Analogue中推导,并表明,对于变量和辅助参数的方便更改,它承认了汉密尔顿配方的$ Q $ analogue。这使我们能够证明Sakai的$ Q $ -Analogue okamoto空间的初始条件下的$ qp_ \ mathrm {vi} $允许差分键盘空间\ emph {via}一些自然限制过程。
In the current paper we study the $q$-analogue introduced by Jimbo and Sakai of the well known Painlevé VI differential equation. We explain how it can be deduced from a $q$-analogue of Schlesinger equations and show that for a convenient change of variables and auxiliary parameters, it admits a $q$-analogue of Hamiltonian formulation. This allows us to show that Sakai's $q$-analogue of Okamoto space of initial conditions for $qP_\mathrm{VI}$ admits the differential Okamoto space \emph{via} some natural limit process.