论文标题

测量投票弹性和竞争力的计算方法

A Computational Approach to Measuring Vote Elasticity and Competitiveness

论文作者

DeFord, Daryl, Duchin, Moon, Solomon, Justin

论文摘要

最近,人们对游击队的关注浪潮是为了完善或取代在全国各地政治重新划分的法律。在几个州改革工作中的一个共同因素是包括竞争力指标,或者根据地区级别的成果在发挥作用或可能引起争议的程度来评估区域计划的评分。 在本文中,我们研究了最近的改革提案所激发的几类竞争力指标,然后在国会和州参议院一级评估了他们在大型地区计划中的潜在结果。这是使用来自应用统计的MCMC技术在有效的重新分配替代方案的背景下,使用来自应用统计的MCMC技术的越来越多的文献的一部分。我们的经验分析侧重于五个国家 - 犹他州,佐治亚州,威斯康星州,弗吉尼亚州和马萨诸塞州 - 选择代表一系列党派属性。我们重点介绍了特定情况在创建良好的竞争力指标方面遇到的困难,并表明优化竞争力可以对其他游击党指标产生意想不到的后果。这些结果表明了(1)避免将详细的度量限制用于长期宪法改革的重要性,以及(2)在每个重新分配周期中对真实地理主管数据进行仔细的数学模型。

The recent wave of attention to partisan gerrymandering has come with a push to refine or replace the laws that govern political redistricting around the country. A common element in several states' reform efforts has been the inclusion of competitiveness metrics, or scores that evaluate a districting plan based on the extent to which district-level outcomes are in play or are likely to be closely contested. In this paper, we examine several classes of competitiveness metrics motivated by recent reform proposals and then evaluate their potential outcomes across large ensembles of districting plans at the Congressional and state Senate levels. This is part of a growing literature using MCMC techniques from applied statistics to situate plans and criteria in the context of valid redistricting alternatives. Our empirical analysis focuses on five states---Utah, Georgia, Wisconsin, Virginia, and Massachusetts---chosen to represent a range of partisan attributes. We highlight situation-specific difficulties in creating good competitiveness metrics and show that optimizing competitiveness can produce unintended consequences on other partisan metrics. These results demonstrate the importance of (1) avoiding writing detailed metric constraints into long-lasting constitutional reform and (2) carrying out careful mathematical modeling on real geo-electoral data in each redistricting cycle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源