论文标题
非共线磁性的有效的塞伯格(Seiberg-witten)仪表理论
Effective Seiberg-Witten gauge theory of noncollinear magnetism
论文作者
论文摘要
平稳变化的磁化纹理,例如域墙,天空或跳跃,是未来信息的有前途的候选人。了解它们的物理特性既是一个主要的兴趣领域,又是理论上的挑战,涉及不同长度尺度的物理学。在这里,我们将量子力学的相空间公式应用于零温度极限的磁绝缘体和金属,以根据磁化的真实空间衍生物获得梯度膨胀。我们的主要重点是非共线磁体中的异常霍尔效应,它是检测局部磁性结构的重要代理。我们以非交通性纤维束的语言提出问题,并使密度矩阵的半经典扩展和浆果曲率的核心发现受弦理论的结构控制,该结构被称为Seiberg-Witten Map。该地图最初在有效的D-Branes的有效低能行为中发现,现在为非连续性磁铁的梯度扩展技术提供了几何基础,并就其电子特性提供了根本的新观点。
Smoothly varying magnetization textures such as domain walls, skyrmions or hopfions serve as promising candidates for the information bits of the future. Understanding their physical properties is both a major field of interest and a theoretical challenge, involving the physics on different length scales. Here, we apply the phase space formulation of quantum mechanics to magnetic insulators and metals in the limit of zero temperature to obtain a gradient expansion in terms of real-space derivatives of the magnetization. Our primary focus is the anomalous Hall effect in noncollinear magnets which serves as an important proxy in the detection of localized magnetic structures. We formulate the problem in the language of noncommutative fiber bundles and make the central finding that the semiclassical expansion of the density matrix and the Berry curvature is governed by a construction from string theory which is known as the Seiberg-Witten map. Originally discovered in the effective low-energy behavior of D-branes, this map now gives a geometrical underpinning to gradient expansion techniques in noncollinear magnets and offers a radically new perspective on their electronic properties.