论文标题
因果推断,具有多种版本的治疗以及对个性化医学的应用
Causal inference with multiple versions of treatment and application to personalized medicine
论文作者
论文摘要
高通量测序和靶向疗法的发展导致了个性化医学的出现:患者的分子特征或特定药物反应的特定生物标志物的存在将对应于医生或治疗分配算法提出的治疗建议。这种算法的数量越来越大,这提出了一个问题,即知道个性化的医学策略将固有地包括不同版本的治疗方法,即如何量化其临床影响。 因此,我们指定了一个适当的因果框架,并具有多种版本的治疗方法,以定义对精确医学策略的兴趣效应,并通过观察数据估算它们模仿临床试验。因此,我们确定治疗分配算法是否比不同的对照组更有效:黄金标准治疗,观察到的治疗或靶向治疗的随机分配。 首先在模拟数据上评估了精确医学效应的因果估计,并且与对治疗臂之间预期结果差异的幼稚估计相比,它们证明了偏差和方差较低。各种模拟方案还指出了不同的偏见来源,具体取决于临床情况(反应的异质性,观察到的治疗方法等)。还提供了一个Rhiny Interactive应用程序,以进一步探索其他用户定义的方案。然后将该方法应用于来自患者衍生的异种移植物(PDX)的数据:将每个患者肿瘤植入后来用不同药物治疗的几只免疫缺陷的克隆小鼠中,从而为所有患者提供了所有相应的药物敏感性的机会。访问这些独特的临床前数据模拟反事实结果,可以验证使用该方法获得的因果估计的可靠性。
The development of high-throughput sequencing and targeted therapies has led to the emergence of personalized medicine: a patient's molecular profile or the presence of a specific biomarker of drug response will correspond to a treatment recommendation made either by a physician or by a treatment assignment algorithm. The growing number of such algorithms raises the question of how to quantify their clinical impact knowing that a personalized medicine strategy will inherently include different versions of treatment. We thus specify an appropriate causal framework with multiple versions of treatment to define the causal effects of interest for precision medicine strategies and estimate them emulating clinical trials with observational data. Therefore, we determine whether the treatment assignment algorithm is more efficient than different control arms: gold standard treatment, observed treatments or random assignment of targeted treatments. Causal estimates of the precision medicine effects are first evaluated on simulated data and they demonstrate a lower biases and variances compared with naive estimation of the difference in expected outcome between treatment arms. The various simulations scenarios also point out the different bias sources depending on the clinical situation (heterogeneity of response, assignment of observed treatments etc.). A RShiny interactive application is also provided to further explore other user-defined scenarios. The method is then applied to data from patient-derived xenografts (PDX): each patient tumour is implanted in several immunodeficient cloned mice later treated with different drugs, thus providing access to all corresponding drug sensitivities for all patients. Access to these unique pre-clinical data emulating counterfactual outcomes allows to validate the reliability of causal estimates obtained with the proposed method.