论文标题
链接,桥接和宽度树
Links, bridge number, and width trees
论文作者
论文摘要
对于$ s^3 $中的每个链接$ l $,我们将某些标记为定向树的集合(称为宽度树)关联起来。我们用这些宽度树来解释一些古典和新的拓扑链接不变性,并展示宽度树的几何结构如何从下面绑定这些不变的值。我们还表明,每个宽度树都与$ s^3 $中的结相关联,如果它也符合足够高的“距离阈值”,则它将达到一定的等效性,即实现不变性的独特宽度树。
To each link $L$ in $S^3$ we associate a collection of certain labelled directed trees, called width trees. We interpret some classical and new topological link invariants in terms of these width trees and show how the geometric structure of the width trees can bound the values of these invariants from below. We also show that each width tree is associated with a knot in $S^3$ and that if it also meets a high enough "distance threshold" it is, up to a certain equivalence, the unique width tree realizing the invariants.