论文标题

Maise:神经网络间模型和进化结构优化的构建

MAISE: Construction of neural network interatomic models and evolutionary structure optimization

论文作者

Hajinazar, Samad, Thorn, Aidan, Sandoval, Ernesto D., Kharabadze, Saba, Kolmogorov, Aleksey N.

论文摘要

从头算结构演变(Maise)的模块是用于材料建模和预测的开源软件包。该代码的主要功能是自动生成神经网络(NN)的原子间潜力,可用于全球结构搜索。 Behler-parrinello型NN模型的系统构建近似于从头静电和力的模型依赖于我们最近的研究中引入的两种方法。生成参考结构的进化采样方案改善了在不受约束的搜索中访问的区域的映射,而分层训练方法可以为多个元素创建标准化的NN模型。这里提出的更灵活的NN体系结构扩展了分层方案对任意数量元素的适用性。 NN开发中的完整工作流程通过用Python编写的可自定义的“ Maise-Net”包装管理。 Maise中的全球结构优化能力基于适用于纳米颗粒,膜和散装晶体的进化算法。该算法的多部扩展允许在给定尺寸范围内对纳米颗粒进行有效的同时优化。实现的结构分析功能包括具有径向分布功能的指纹识别以及使用SPGLIB工具找到空间组。这项工作概述了Maise的可用功能,构建的模型和确认的预测。

Module for ab initio structure evolution (MAISE) is an open-source package for materials modeling and prediction. The code's main feature is an automated generation of neural network (NN) interatomic potentials for use in global structure searches. The systematic construction of Behler-Parrinello-type NN models approximating ab initio energy and forces relies on two approaches introduced in our recent studies. An evolutionary sampling scheme for generating reference structures improves the NNs' mapping of regions visited in unconstrained searches, while a stratified training approach enables the creation of standardized NN models for multiple elements. A more flexible NN architecture proposed here expands the applicability of the stratified scheme for an arbitrary number of elements. The full workflow in the NN development is managed with a customizable 'MAISE-NET' wrapper written in Python. The global structure optimization capability in MAISE is based on an evolutionary algorithm applicable for nanoparticles, films, and bulk crystals. A multitribe extension of the algorithm allows for an efficient simultaneous optimization of nanoparticles in a given size range. Implemented structure analysis functions include fingerprinting with radial distribution functions and finding space groups with the SPGLIB tool. This work overviews MAISE's available features, constructed models, and confirmed predictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源