论文标题
WiFitrace:使用无源WiFi感应的传染病基于网络的接触跟踪
WiFiTrace: Network-based Contact Tracing for Infectious Diseases Using Passive WiFi Sensing
论文作者
论文摘要
接触示踪是一种良好的有效方法,用于遏制传染性疾病的传播。虽然使用手机的基于蓝牙的接触跟踪方法最近变得很流行,但这些方法却遭受了临界质量采用的需求。在本文中,我们提出了WiFitrace,这是一种以网络为中心的接触跟踪方法,依赖于无客户端参与而被动WiFi感应。我们的方法利用企业网络收集的WiFi网络日志进行性能和安全监控,并利用它们重建设备轨迹进行触点跟踪。我们的方法专门设计用于增强传统方法的功效,而不是用新技术取代它们。我们设计了一种有效的图形算法,以将我们的方法扩展到具有数万用户的大型网络。基于图的方法在内存中的索引postgressql的表现至少为4.5倍,而没有任何索引更新开销或阻止。我们已经实施了系统的完整原型,并将其部署在两个大型大学校园中。我们验证了我们的方法,并使用案例研究和使用现实世界WiFi数据集的详细实验证明了其功效。
Contact tracing is a well-established and effective approach for the containment of the spread of infectious diseases. While Bluetooth-based contact tracing method using phones has become popular recently, these approaches suffer from the need for a critical mass adoption to be effective. In this paper, we present WiFiTrace, a network-centric approach for contact tracing that relies on passive WiFi sensing with no client-side involvement. Our approach exploits WiFi network logs gathered by enterprise networks for performance and security monitoring, and utilizes them for reconstructing device trajectories for contact tracing. Our approach is specifically designed to enhance the efficacy of traditional methods, rather than to supplant them with new technology. We designed an efficient graph algorithm to scale our approach to large networks with tens of thousands of users. The graph-based approach outperforms an indexed PostgresSQL in memory by at least 4.5X without any index update overheads or blocking. We have implemented a full prototype of our system and deployed it on two large university campuses. We validated our approach and demonstrate its efficacy using case studies and detailed experiments using real-world WiFi datasets.