论文标题
较高维主场的母系近似
Matricial approximations of higher dimensional master fields
论文作者
论文摘要
我们研究了我们在先前工作中构建的主场的母系近似。这些近似值(以非交通分布为单位)是通过提取布朗单位扩散的块(带有$ \ Mathbb {r}的条目,\ Mathbb {C} $或$ \ Mathbb {k} $)来获得的,并让这些块的尺寸趋于无限。我们将研究分为两个部分:在第一个部分中,我们提取方块,而在第二个方面,我们允许矩形块。在这两种情况下,自由概率理论和操作员可价值的自由概率都是最准确地描述了限制分布的自然框架。
We study matricial approximations of master fields we constructed in a previous work. These approximations (in non-commutative distribution) are obtained by extracting blocks of a Brownian unitary diffusion (with entries in $\mathbb{R}, \mathbb{C}$ or $\mathbb{K}$) and letting the dimension of these blocks to tend to infinity. We divide our study into two parts: in the first one, we extract square blocks while in the second one we allow rectangular blocks. In both cases, free probability theory and operator-valued free probability appear as the natural framework in which the limiting distributions are most accurately described.