论文标题

Riemannian歧管的DEHN型数量

A Dehn type quantity for Riemannian manifolds

论文作者

Knill, Oliver

论文摘要

我们查看功能性y(m)= int_m k(x)dv(x)的compact riemannian 2d-manifolds m,其中k(x)=(2d)! (d!)^ - 1(4pi)^ - d int_t prod_k = 1^d k_t_2k,t_2k+1(x)dt涉及d截面曲率k_ij(x)的d sim t sim o(2d)的d截面曲率的产物。带有k_d(x)=(d!)^ - 1(4pi)^-d sum_sigma prod_k = 1^d k_sigma(2k-1)的离散版本y_disc(m)y_disc(m),sigma(2k)总和在所有置换率上,所有排列的sigma sigma sigma sigma of 1,..,..,2d。与欧拉(Euler)特征不同的是高斯 - 骨网切尔(Gauss-Bonnet-Chern)是int_m k_gbc dv = x(m),y或y_disc的数量通常依赖于度量。我们对y(m)-x(m)感兴趣,因为如果m具有曲率符号E,则y(m)e^d and y_disc(m)为正,而x(m)e^d> 0仅是猜想。我们在一些具体示例中计算y_disc,例如2d-spheres,4-manifold cp^2,6个歧管SO(4)或8-manifold SU(3)。

We look at the functional Y(M) = int_M K(x) dV(x) for compact Riemannian 2d-manifolds M, where K(x) = (2d)! (d!)^-1 (4pi)^-d int_T prod_k=1^d K_t_2k,t_2k+1(x) dt involves products of d sectional curvatures K_ij(x) averaged over the space T sim O(2d) of all orthonormal frames t=(t_1, ... ,t_2d). A discrete version Y_disc(M) with K_d(x) = (d!)^-1 (4pi)^-d sum_sigma prod_k=1^d K_sigma(2k-1),sigma(2k) sums over all permutations sigma of 1,..,2d. Unlike Euler characteristic which by Gauss-Bonnet-Chern is int_M K_GBC dV=X(M), the quantities Y or Y_disc are in general metric dependent. We are interested in Y(M)-X(M) because if M has curvature sign e, then Y(M) e^d and Y_disc(M) are positive while X(M) e^d>0 is only conjectured. We compute Y_disc in a few concrete examples like 2d-spheres, the 4-manifold CP^2, the 6 manifold SO(4) or the 8-manifold SU(3).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源