论文标题
带有深度学习和流体动力模拟的星系群质量估计
Galaxy cluster mass estimation with deep learning and hydrodynamical simulations
论文作者
论文摘要
我们评估了卷积神经网络(CNN)预测巴哈马流体动力学模拟中星系群质量的能力。我们使用以下方式训练四个单独的单通道网络,分别以观察示踪剂的形式分别使用:恒星质量,软X射线通量,辐射X射线通量和Compton $ Y $参数。我们的培训集由$ \ sim $ 4800从模拟生成的合成群集图像,而额外的$ \ sim $ 3200图像形成了一个验证集和测试集,每个图像均为1600张图像。为了模仿实际观察,这些图像还包含位于簇前和后面50 mpc以内的不相关结构,并在投影中看到,以及包括噪声和平滑的仪器系统。除了所有四个可观察到的CNN外,我们还通过组合四个观察示踪剂来训练“多通道” CNN。所有五个CNN的学习曲线在1000个时期内收敛。对于$ 10^{13.25} m _ {\ odot} <m <10^{14.5} m _ {\ odot} $的光环质量的预测特别精确,其中所有五个网络都会产生平均订单$ \%\%\%$ \%$ $ \ $ \ $ \ $ \ \ \%。经过Compton $ Y $参数地图培训的网络产生了最精确的预测。我们使用两个诊断测试来解释网络的行为,以确定哪些功能用于预测群集质量。经过恒星质量图像训练的CNN检测星系(毫不奇怪),而接受气体基示踪剂训练的CNN利用信号的形状来估计群集质量。
We evaluate the ability of Convolutional Neural Networks (CNNs) to predict galaxy cluster masses in the BAHAMAS hydrodynamical simulations. We train four separate single-channel networks using: stellar mass, soft X-ray flux, bolometric X-ray flux, and the Compton $y$ parameter as observational tracers, respectively. Our training set consists of $\sim$4800 synthetic cluster images generated from the simulation, while an additional $\sim$3200 images form a validation set and a test set, each with 1600 images. In order to mimic real observation, these images also contain uncorrelated structures located within 50 Mpc in front and behind clusters and seen in projection, as well as instrumental systematics including noise and smoothing. In addition to CNNs for all the four observables, we also train a `multi-channel' CNN by combining the four observational tracers. The learning curves of all the five CNNs converge within 1000 epochs. The resulting predictions are especially precise for halo masses in the range $10^{13.25}M_{\odot}<M<10^{14.5}M_{\odot}$, where all five networks produce mean mass biases of order $\approx$1\% with a scatter of $\lesssim$20\%. The network trained with Compton $y$ parameter maps yields the most precise predictions. We interpret the network's behaviour using two diagnostic tests to determine which features are used to predict cluster mass. The CNN trained with stellar mass images detect galaxies (not surprisingly), while CNNs trained with gas-based tracers utilise the shape of the signal to estimate cluster mass.