论文标题
宇宙学的OTOC:制定新的宇宙学微传统相关函数,用于在异常平衡的量子统计场理论中随机混沌波动
The Cosmological OTOC: Formulating new cosmological micro-canonical correlation functions for random chaotic fluctuations in Out-of-Equilibrium Quantum Statistical Field Theory
论文作者
论文摘要
超时订购的相关性(OTOC)函数是量子场理论中重要的新探针,被视为随机量子相关性的重要度量。在本文中,口号“宇宙学符合凝结物理学”,我们展示了一种形式主义,它首次使用它来计算在通货膨胀期间随机粒子产生期间的宇宙学OTOC,并在规范量化技术之后重新加热。在此计算中,涉及两个动态时间尺度,在一个时间尺度中,宇宙学摄动变量,另一个时间尺度定义了规范共轭动量,这是定义时间尺度分离的OTOC的严格要求,并且与OTOC的一般定义完全一致。最重要的是,使用当前的形式主义不仅可以研究随机通货膨胀和再加热期间的量子相关性,而且还可以研究宇宙学中任何随机事件的量子相关性。接下来,使用宇宙学OTOC的较晚时间指数衰减相对于我们宇宙的动力学时间尺度,这在这种形式主义中与规范共轭动量操作员相关,我们通过计算{\ it lyapunov spectrum}的表达来研究量子混乱的现象。此外,使用众所周知的Maldacena Shenker Stanford(MSS),在Lyapunov指数上,$λ\ leq2π/β$,我们在宇宙的很晚时尺度上提出了在平衡温度下的下限,$ t = 1/β$。另一方面,关于与扰动变量相关的另一个时间尺度,我们发现减少但不是指数衰减的行为,这量化了异常平衡时的随机相关性。最后,我们研究了OTOC的经典限制,以检查与较大的时间限制行为的一致性。
The out-of-time-ordered correlation (OTOC) function is an important new probe in quantum field theory which is treated as a significant measure of random quantum correlations. In this paper, with the slogan "Cosmology meets Condensed Matter Physics" we demonstrate a formalism using which for the first time we compute the Cosmological OTOC during the stochastic particle production during inflation and reheating following canonical quantization technique. In this computation, two dynamical time scales are involved, out of them at one time scale the cosmological perturbation variable and for the other the canonically conjugate momentum is defined, which is the strict requirement to define time scale separated quantum operators for OTOC and perfectly consistent with the general definition of OTOC. Most importantly, using the present formalism not only one can study the quantum correlation during stochastic inflation and reheating, but also study quantum correlation for any random events in Cosmology. Next, using the late time exponential decay of cosmological OTOC with respect to the dynamical time scale of our universe which is associated with the canonically conjugate momentum operator in this formalism we study the phenomena of quantum chaos by computing the expression for {\it Lyapunov spectrum}. Further, using the well known Maldacena Shenker Stanford (MSS) bound, on Lyapunov exponent, $λ\leq 2π/β$, we propose a lower bound on the equilibrium temperature, $T=1/β$, at the very late time scale of the universe. On the other hand, with respect to the other time scale with which the perturbation variable is associated, we find decreasing but not exponentially decaying behaviour, which quantifies the random correlation at out-of-equilibrium. Finally, we have studied the classical limit of the OTOC to check the consistency with the large time limiting behaviour.