论文标题

从自然主义驾驶数据中学习,以示为人类的自主公路驾驶

Learning from Naturalistic Driving Data for Human-like Autonomous Highway Driving

论文作者

Xu, Donghao, Ding, Zhezhang, He, Xu, Zhao, Huijing, Moze, Mathieu, Aioun, François, Guillemard, Franck

论文摘要

以人类方式驾驶对于自动驾驶汽车成为聪明且可预测的交通参与者很重要。为了实现这一目标,应仔细调整运动计划模块的参数,这需要大量的努力和专家知识。在这项研究中,提出了一种从自然主义驾驶数据中学习成本参数的方法。通过鼓励选定的轨迹在相同的交通情况下近似人类驾驶轨迹来实现学习。受雇的运动计划者遵循一种广泛接受的方法,该方法首先采样轨迹空间中的候选轨迹,然后选择以最低成本作为计划轨迹的方法。此外,除了舒适性,效率和安全性等传统因素外,还提出了成本功能,以纳入对人类驾驶员(人类驾驶员)等行为决策的诱因,以便将车道变更决策和运动计划都耦合到一个框架中。提出和实施了两种类型的车道激励成本 - 启发式和学习。为了验证所提出的方法的有效性,通过使用北京高速公路上收集的人类驾驶员的自然主义轨迹数据开发数据集,其中包含左右车道的车道变化样本,以及汽车跟随。实验是针对车道变更决策和运动计划进行的,并实现了有希望的结果。

Driving in a human-like manner is important for an autonomous vehicle to be a smart and predictable traffic participant. To achieve this goal, parameters of the motion planning module should be carefully tuned, which needs great effort and expert knowledge. In this study, a method of learning cost parameters of a motion planner from naturalistic driving data is proposed. The learning is achieved by encouraging the selected trajectory to approximate the human driving trajectory under the same traffic situation. The employed motion planner follows a widely accepted methodology that first samples candidate trajectories in the trajectory space, then select the one with minimal cost as the planned trajectory. Moreover, in addition to traditional factors such as comfort, efficiency and safety, the cost function is proposed to incorporate incentive of behavior decision like a human driver, so that both lane change decision and motion planning are coupled into one framework. Two types of lane incentive cost -- heuristic and learning based -- are proposed and implemented. To verify the validity of the proposed method, a data set is developed by using the naturalistic trajectory data of human drivers collected on the motorways in Beijing, containing samples of lane changes to the left and right lanes, and car followings. Experiments are conducted with respect to both lane change decision and motion planning, and promising results are achieved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源