论文标题

旨在使用通用图形处理单元(GPGPU)单元,以加速批处理的完美搅拌反应器(PSR)计算

Towards using general purpose graphics processing unit (GPGPU) units for accelerating the batched perfectly stirred reactor (PSR) calculations

论文作者

Adhikari, Sudip, Sayre, Alan, Chandy, Abhilash J

论文摘要

使用复杂燃烧动力学的实用湍流燃烧装置的效率和污染物发射特性的详细分析通常取决于燃烧化学之间的相互作用,这些化学涉及气体物种和烟灰,以及湍流特性。这种燃烧系统的建模通常需要使用具有数百种和数千种反应的化学动力学机制。完全搅拌的反应堆(PSR)是理想化的反应器环境,其中反应物种具有较高的搅拌速率,并且燃烧产物均匀地分布在反应器内。已经发现PSR在火焰稳定,NOX形成等污染物的预测,开发和测试化学反应机制以及研究烟灰的形成和生长方面非常有用。描述PSR的基本方程式构成了高度非线性代数方程的系统,这是由于该物种的净生产率与物种浓度之间的复杂关系,最终使方程僵硬,并且该方程的解成为高度计算的密集型解决方案,从而导致需要有效且可靠的溶液解决方案算法。图形处理单元(GPU)过去已被广泛用作中央处理单元(CPU)的具有成本效益的替代方案,并且可以有效地使用GPU的高度平行线,以提高此类算法的性能,以加快计算的速度。提出了高度平行的GPU实现,用于使用强大而有效的非线性求解器进行气相化学反应的批处理计算,并进一步耦合到广泛使用的时刻之一

Detailed analysis of efficiency and pollutant emission characteristics of practical turbulent combustion devices using complex combustion kinetics often depend on the interactions between the combustion chemistry involving both gasses species and soot, and turbulent flow characteristics. Modeling of such combustion system often requires the use of chemical kinetic mechanisms with hundreds of species and thousands of reactions. Perfectly stirred reactors (PSR) are idealized reactor environments, where the reacting species have high rate of stirring, and the combustion products are uniformly distributed inside the reactor. PSRs have been found very useful in the study of flame stabilization, prediction of pollutants such as NOx formation, development and testing chemical reaction mechanisms, and investigation of soot formation and growth. The fundamental equations describing a PSR constitute systems of highly nonlinear algebraic equations, due to the complex relationship between the net production rate of the species and the species concentration, which ultimately makes the equations stiff, and the solution of such equations become highly compute-intensive leading to the need for a efficient and robust solution algorithms. Graphics processing units (GPUs) have widely been used in the past as a cost-effective alternate to central processing units (CPUs), and highly parallel threads of GPUs can be used in a efficient manner to improve the performance of such algorithms for speeding up the calculations. A highly parallelized GPU implementation is presented for a batched calculation of PSR model, using a robust and efficient non-linear solver for gas phase chemical reactions and is further coupled to one of the widely used moment

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源