论文标题
在有和没有本地通信的情况下,分布式远程估计在碰撞通道上
Distributed remote estimation over the collision channel with and without local communication
论文作者
论文摘要
文融互联网和网络物理系统的出现需要以自主和分布式方式协调获得有限的通信资源。在此,考虑了通过有限容量K(K <n)的碰撞通道与融合中心通信的无线传感系统的最佳设计。特别是,可以表明,在发射机处受到基于阈值的策略,最小化均方误差的问题是准串联。因此,可以应用低复杂性,数值优化方法。当传感器之间的协调不可能时,最佳阈值策略的性能接近集中式下限。由于权力下放而造成的损失得到了彻底的特征。传感器之间的局部通信(使用稀疏连接的图),可以在线学习统计模型的未知参数。这些学到的参数用于在本地和自动上计算所需的阈值。研究并分析了基于共识的策略,以进行参数估计。一种策略通过快速收敛来实现分散方法的性能,而第二种策略则采用集中式方法的性能,尽管收敛速度较慢。结合两种方法中最好的混合动力方案正在提出快速收敛和出色的收敛性能。
The emergence of the Internet-of-Things and cyber-physical systems necessitates the coordination of access to limited communication resources in an autonomous and distributed fashion. Herein, the optimal design of a wireless sensing system with n sensors communicating with a fusion center via a collision channel of limited capacity k (k < n) is considered. In particular, it is shown that the problem of minimizing the mean-squared error subject to a threshold-based strategy at the transmitters is quasi-convex. As such, low complexity, numerical optimization methods can be applied. When coordination among sensors is not possible, the performance of the optimal threshold strategy is close to that of a centralized lower bound. The loss due to decentralization is thoroughly characterized. Local communication among sensors (using a sparsely connected graph), enables the on-line learning of unknown parameters of the statistical model. These learned parameters are employed to compute the desired thresholds locally and autonomously. Consensus-based strategies are investigated and analyzed for parameter estimation. One strategy approaches the performance of the decentralized approach with fast convergence and a second strategy approaches the performance of the centralized approach, albeit with slower convergence. A hybrid scheme that combines the best of both approaches is proposed offering a fast convergence and excellent convergent performance.