论文标题
基于FPGA的在线计算多元EMD的设计(MEMD)
FPGA based design for online computation of Multivariate EMD (MEMD)
论文作者
论文摘要
在许多现代科学和工程应用中,例如生物医学工程,多通道或多通道数据已变得无处不在,这是由于传感器和计算技术的最新进展。处理这些数据集是由于以下方面的挑战:i)它们的较大尺寸和多维性质,因此需要专门的算法和有效的硬件设计来在线和实时处理; ii)在许多现实生活应用中产生的数据的非平稳性质,要求标准多尺度非平稳信号处理工具的新扩展。在本文中,我们通过提出一个完全基于FPGA的硬件体系结构来解决以前的问题,该硬件架构是一种流行的多尺度和多元信号处理算法(称为多元经验模式分解(MEMD))。 MEMD是一种数据驱动的方法,它将标准经验模式分解(EMD)算法的功能扩展到多通道或多元数据集。自2010年成立以来,该算法已经发现了跨越不同工程领域的广泛的传播应用。但是,该算法的基于FPGA的平行硬件设计无法用于其在线和实时处理。我们提出的MEMD架构使用固定点操作,并在筛分过程中采用立方样条插值。最后,提供了多元合成和现实世界生物学信号的分解示例。
Multivariate or multichannel data have become ubiquitous in many modern scientific and engineering applications, e.g., biomedical engineering, owing to recent advances in sensor and computing technology. Processing these data sets is challenging owing to: i) their large size and multidimensional nature, thus requiring specialized algorithms and efficient hardware designs for on-line and real-time processing; ii) the nonstationary nature of data arising in many real life applications demanding new extensions of standard multiscale non-stationary signal processing tools. In this paper, we address the former issue by proposing a fully FPGA based hardware architecture of a popular multi-scale and multivariate signal processing algorithm, termed as multivariate empirical mode decomposition (MEMD). MEMD is a data-driven method that extends the functionality of standard empirical mode decomposition (EMD) algorithm to multichannel or multivariate data sets. Since its inception in 2010, the algorithm has found wide spread applications spanning different engineering related fields. Yet, no parallel FPGA based hardware design of the algorithm is available for its on-line and real-time processing. Our proposed architecture for MEMD uses fixed point operations and employs cubic spline interpolation within the sifting process. Finally, examples of decomposition of multivariate synthetic and real world biological signals are provided.