论文标题
在本地原始的通用二次形式上
On locally primitively universal quadratic forms
论文作者
论文摘要
如果(原始)(原始)代表了所有几乎所有几乎有限的积极整数,则据说积极的确定二次形式几乎是(原始)通用。通常,几乎原始的普遍性比几乎普遍性更强。本文的两个主要结果是:1)每个原始通用形式在每个p-adic整数环上非定义均不代表零,而2)五个或更多变量中的每种几乎通用形式几乎都是普遍的。
A positive definite integral quadratic form is said to be almost (primitively) universal if it (primitively) represents all but at most finitely many positive integers. In general, almost primitive universality is a stronger property than almost universality. The two main results of this paper are: 1) every primitively universal form nontrivially represents zero over every ring of p-adic integers, and 2) every almost universal form in five or more variables is almost primitively universal.