论文标题
在hom-lie代数上进行竞标和通勤线性地图
Biderivations and commuting linear maps on Hom-Lie algebras
论文作者
论文摘要
本文的目的是确定偏斜的biderivations $ \ text {bider} _ {\ text {s}}}(l,v)$和通勤线性映射映射$ \ text {com}(com}(l,v)$在hom-lie algebra $(l,α)$上的$(l,α)$(l,α)$( β)$,两者都与$ \ text {cent}(l,v)$,$(v,ρ,β)$密切相关。具体而言,在适当的假设下,每一个$δ\ in \ text {bider} _ {\ text {s}}}(l,v)$是$δ(x,y)=β^{ - 1}γ( - 1}γ([x,y])$的$ umugumutimumutimumutimut pext { - 1}γ{ - 1}γ([x,y])$与$ \ text {cent}(l,v)$重合。此外,我们给出了用于描述$ \ text {bider} _ {\ text {s}}}(l,v)$和$ \ text {com}(l,v)$的算法,并提供了几个示例。
The purpose of this paper is to determine skew-symmetric biderivations $\text{Bider}_{\text{s}}(L, V)$ and commuting linear maps $\text{Com}(L, V)$ on a Hom-Lie algebra $(L,α)$ having their ranges in an $(L,α)$-module $(V, ρ, β)$, which are both closely related to $\text{Cent} (L, V)$, the centroid of $(V, ρ, β)$. Specifically, under appropriate assumptions, every $δ\in\text{Bider}_{\text{s}}(L, V)$ is of the form $δ(x,y)=β^{-1}γ([x,y])$ for some $γ\in \text{Cent} (L, V)$, and $\text{Com}(L, V)$ coincides with $\text{Cent} (L, V)$. Besides, we give the algorithm for describing $\text{Bider}_{\text{s}}(L, V)$ and $\text{Com}(L, V)$ respectively, and provide several examples.