论文标题

DJENSEMEL:关于深度学习黑盒时空模型的脱节合奏的选择

DJEnsemble: On the Selection of a Disjoint Ensemble of Deep Learning Black-Box Spatio-Temporal Models

论文作者

Souto, Yania Molina, Pereira, Rafael, Zorrilla, Rocío, Chaves, Anderson, Tsan, Brian, Rusu, Florin, Ogasawara, Eduardo, Ziviani, Artur, Porto, Fabio

论文摘要

在本文中,我们提出了一种基于成本的方法,用于自动选择和分配黑盒预测变量的脱节集合,以回答预测性时空查询。我们的方法分为两个部分 - 离线和在线。在离线部分期间,我们将预测域数据(将其转换为常规网格)和Black-Box模型进行预处理,以计算其时空学习功能。在在线部分中,我们计算了一个Djensemble计划,该计划根据预测错误的估计和执行成本(生成模型空间分配矩阵),最大程度地降低了多元成本函数 - 并运行最佳的集合计划。我们进行了一系列广泛的实验,以评估Djensemble方法并突出其效率。我们表明,我们的成本模型制定了计划,其性能接近实际的最佳计划。与传统的合奏方法进行比较时,Djensemble的执行时间提高了$ 4倍,预测准确性将近$ 9倍。据我们所知,这是解决优化黑框模型分配以回答预测时空查询的问题的第一项工作。

In this paper, we present a cost-based approach for the automatic selection and allocation of a disjoint ensemble of black-box predictors to answer predictive spatio-temporal queries. Our approach is divided into two parts -- offline and online. During the offline part, we preprocess the predictive domain data -- transforming it into a regular grid -- and the black-box models -- computing their spatio-temporal learning function. In the online part, we compute a DJEnsemble plan which minimizes a multivariate cost function based on estimates for the prediction error and the execution cost -- producing a model spatial allocation matrix -- and run the optimal ensemble plan. We conduct a set of extensive experiments that evaluate the DJEnsemble approach and highlight its efficiency. We show that our cost model produces plans with performance close to the actual best plan. When compared against the traditional ensemble approach, DJEnsemble achieves up to $4X$ improvement in execution time and almost $9X$ improvement in prediction accuracy. To the best of our knowledge, this is the first work to solve the problem of optimizing the allocation of black-box models to answer predictive spatio-temporal queries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源