论文标题
哥白尼多元宇宙
The Copernican Multiverse of Sets
论文作者
论文摘要
我们为集合理论的多元宇宙开发了一个非构图的框架。 $ \ MATHSF {ZF} $通过使用新符号$ \ Mathsf {Uni}(\ Mathcal {U})$和$ \ Mathsf {modsf {modsf {mod}(\ Mathcal {\ nathcal {u,σ})$真实,并在Mathcal in的范围中表达了$ \ Mathsf {Zf} $。 $ \ mathcal {u} $。 $σ$在增强语言上范围为范围,导致分析的骗子风格现象。该框架既与广泛的多元宇宙概念兼容,又提出了自己的哲学和语义动机多元宇宙原则。特别是,该框架与必需品的演绎规则紧密相关,即多元宇宙理论只能证明它也证明它也证明在所有宇宙中。我们认为,这可能在哲学上被认为是哥白尼原则,即背景理论对其内部宇宙的理论没有特权地位。 我们的主要数学结果是一种引理,封装了一种技术,用于在更熟悉的理论中局部解释我们基本框架的各种扩展。我们将其应用于此类语义动机的扩展,表明它们的一致性强度最多略高于基础理论$ \ Mathsf {ZF} $的一致性,因此并不严重限制了Set set theoretic Multiverse的多样性。我们以案例研究将框架应用于两个集合理论概念的案例研究结束:算术绝对性和乔尔·D·汉金斯的多元宇宙理论。
We develop an untyped framework for the multiverse of set theory. $\mathsf{ZF}$ is extended with semantically motivated axioms utilizing the new symbols $\mathsf{Uni}(\mathcal{U})$ and $\mathsf{Mod}(\mathcal{U, σ})$, expressing that $\mathcal{U}$ is a universe and that $σ$ is true in the universe $\mathcal{U}$, respectively. Here $σ$ ranges over the augmented language, leading to liar-style phenomena that are analysed. The framework is both compatible with a broad range of multiverse conceptions and suggests its own philosophically and semantically motivated multiverse principles. In particular, the framework is closely linked with a deductive rule of Necessitation expressing that the multiverse theory can only prove statements that it also proves to hold in all universes. We argue that this may be philosophically thought of as a Copernican principle that the background theory does not hold a privileged position over the theories of its internal universes. Our main mathematical result is a lemma encapsulating a technique for locally interpreting a wide variety of extensions of our basic framework in more familiar theories. We apply this to show, for a range of such semantically motivated extensions, that their consistency strength is at most slightly above that of the base theory $\mathsf{ZF}$, and thus not seriously limiting to the diversity of the set-theoretic multiverse. We end with case studies applying the framework to two multiverse conceptions of set theory: arithmetic absoluteness and Joel D. Hamkins' multiverse theory.