论文标题
关于具有可变系数的高维抛物线PDE的ISS分析的最大基于原理的方法的注释
A Note on the Maximum Principle-based Approach for ISS Analysis of Higher Dimensional Parabolic PDEs with Variable Coefficients
论文作者
论文摘要
本文为在具有可变系数和不同类型的非线性边界条件的高维域上建立一类非线性抛物线偏微分方程(PDE)的投入到状态稳定性(ISS)的最大方法。详细介绍了对ISS分析的ISS分析的技术开发,并为非线性抛物线方程建立ISS估算的一个示例,分别具有非线性的Robin边界条件和非线性Dirichlet边界条件,以说明已开发方法的应用。
This paper presents a maximum principle-based approach in the establishment of input-to-state stability (ISS) for a class of nonlinear parabolic partial differential equations (PDEs) over higher dimensional domains with variable coefficients and different types of nonlinear boundary conditions. Technical development on ISS analysis of the considered systems is detailed, and an example of establishing ISS estimates for a nonlinear parabolic equation with, respectively, a nonlinear Robin boundary condition and a nonlinear Dirichlet boundary condition is provided to illustrate the application of the developed method.