论文标题

Lagrangian解决方案对有限的三体问题产生的周期轨道的分析

The analysis of periodic orbits generated by Lagrangian solutions of the restricted three-body problem with non-spherical primaries

论文作者

Mittal, Amit, Suraj, Md Sanam, Aggarwal, Rajiv

论文摘要

本文涉及拉格朗日解决方案对限制的三体问题产生的定期轨道,当两个原则都是植物的植物时。我们已经说明了$μ,h,σ_1$和$σ_2$的不同值的定期轨道($ h $是能量常数,$μ$ $ $质量比两个初次,$σ_1$和$σ_2$是填充性因素)。这些轨道是通过沿切线给出的位移来确定的,并且由Karimov和Sokolsky \ cite {kari}定义的移动坐标正常。我们已经应用了预测器 - 矫正器算法来构建周期轨道,以试图通过取固定的参数$μ,h,σ_1$和$σ_2$来揭示初选的效果。

The present paper deals with the periodic orbits generated by Lagrangian solutions of the restricted three-body problem when both the primaries are oblate bodies. We have illustrated the periodic orbits for different values of $μ, h,σ_1$ and $σ_2$ ($h$ is energy constant, $μ$ mass ratio of the two primaries, $σ_1$ and $σ_2$ are oblateness factors). These orbits have been determined by giving displacements along the tangent and normal to the mobile coordinates as defined by Karimov and Sokolsky \cite{Kari}. We have applied the predictor-corrector algorithm to construct the periodic orbits in an attempt to unveil the effect of oblateness of the primaries by taking the fixed values of parameters $μ, h, σ_1$ and $σ_2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源