论文标题
相互规范化的常规置换组和Holomorph的Zappa-Szep扩展
Mutually Normalizing Regular Permutation Groups and Zappa-Szep Extensions of the Holomorph
论文作者
论文摘要
对于$ g $的组,嵌入了其一组排列中的$ b = pers(g)$通过左代表$λ:g \ rightarrow b $,$ b $的$λ(g)$的范围是$ \ b $是$ \ operatatorNorname {hol}(g)(g)$,$ g $ $ g $。那些常规$ n \ leq \ leq \ propatatorName {hol}(g)$的集合$ \ MATHCAL {h}(g)$,以至于$ n \ cong g $和$ \ operatorname {norm} _b(n)= \ permatatorname = \ permatatorname {hol}(g hol}(g)$ to to the Muther the Muther Muther of Moulty多个$ $ gomorph $ n \!hol(g)= \ operatoTorname {norm} _b(\ propatatorName {hol}(g))$,在该$ \ Mathcal {h}(g)$中是$ n \!hol(g)$的$λ(g)$的共轭。我们希望通过考虑一组$ \ MATHCAL {q}(g)$来概括这一点,由常规子组组成$ M \ leq \ leq \ propatatorName {hol}(g)$,其中$ m \ cong g $,其中含有$ \ nathcal {h}(h}(h} g)$,其成员与其成员相互正常化的属性。这套集合通常会引起一个$ q \!\ operatorAtorname {hol}(g)$,我们称之为$ g $的准霍洛姆,其中$λ(g)$ of $ q \ q \!\!\!\ operatatorName {hol}(hol}(g)(g)(g)$是$ \ \ \ \ \ \ \ mathcal {q}(q)$。多个holomorph是$ \ operatorname {hol}(g)$的组扩展名,而准霍洛姆将包含$ n \!hol(g)$,但是当大于$ n \!hol(g)$时,通常是带有Holomorph的Zappa-Szép产品。
For a group $G$, embedded in its group of permutations $B=Perm(G)$ via the left regular representation $λ:G\rightarrow B$, the normalizer of $λ(G)$ in $B$ is $\operatorname{Hol}(G)$, the holomorph of $G$. The set $\mathcal{H}(G)$ of those regular $N\leq \operatorname{Hol}(G)$ such that $N\cong G$ and $\operatorname{Norm}_B(N)=\operatorname{Hol}(G)$ is keyed to the structure of the so-called multiple holomorph of $G$, $N\!Hol(G)=\operatorname{Norm}_B(\operatorname{Hol}(G))$, in that $\mathcal{H}(G)$ is the set of conjugates of $λ(G)$ by $N\!Hol(G)$. We wish to generalize this by considering a certain set $\mathcal{Q}(G)$ consisting of regular subgroups $M\leq \operatorname{Hol}(G)$, where $M\cong G$, that contains $\mathcal{H}(G)$ with the property that its members mutually normalize each other. This set will generally give rise to a group $Q\!\operatorname{Hol}(G)$ which we will call the quasi-holomorph of $G$, where the orbit of $λ(G)$ under $Q\!\operatorname{Hol}(G)$ is $\mathcal{Q}(G)$. The multiple holomorph is a group extension of $\operatorname{Hol}(G)$ and the quasi-holomorph will contain $N\!Hol(G)$, but, when larger than $N\!Hol(G)$, is frequently a Zappa-Szép product with the holomorph.