论文标题
原子量子纳米晶体上层建筑的方向控制的结构:推动超薄胶体增益培养基的极限
Orientation-Controlled Construction of Superstructures of Atomically-Flat Nanocrystals: Pushing the Limits of Ultra-Thin Colloidal Gain Media
论文作者
论文摘要
我们提出并展示了一种使用双相液体界面来构建CDSE/CDZNS CORE/SHELE胶体胶体纳米胶片(NPLS)的高度均匀,多层,控制控制的上层建筑的方法。这些原子燃料的纳米晶体被顺序沉积,全部面向固体基板,在几十CM2区域内具有单层厚度和出色均匀性的板。由于这种沉积技术的近乎统一的表面覆盖范围和膜均匀性,因此可以从具有6层NPL的非特征性薄膜膜中观察到放大的自发发射(ASE),这与仅42 nm的厚度相对应。此外,对这些NPL上层建筑的光增益特性的系统研究,这些NPL上层建筑的精确数量从6到15调谐,发现随着NPL单层数量的增加,增益阈值的降低,以及ASE峰位置的连续光谱变化(〜18 nm)。这些观察结果可以通过NPL波导厚度和传播波长的光场约束因子的变化来很好地解释。这项工作证明了由NPL构建块制造可构造厚度的大区域的三维超结构的可能性,该块可以一次性地构造一个单层。所提出的技术还可以扩展以构建混合取向的混合NPL膜,并允许精确的大面积设备工程。
We propose and demonstrate a method for the construction of highly uniform, multilayered, orientation-controlled superstructures of CdSe/CdZnS core/shell colloidal nanoplatelets (NPLs) using bi-phase liquid interface. These atomically-flat nanocrystals are sequentially deposited, all face-down onto a solid substrate, into slabs having monolayer-precise thickness and excellent homogeneity over several tens of cm2 areas. Owing to the near-unity surface coverage and film uniformity of this deposition technique, amplified spontaneous emission (ASE) is observed from an uncharacteristically thin colloidal film having only 6 layers of NPLs, which corresponds to a mere 42 nm thickness. Furthermore, systematic studies of optical gain properties of these NPL superstructures constructed having precise numbers of NPL layers tuned from 6 to 15 revealed the reduction in the gain threshold with the increasing number of NPL monolayers, along with a continuous spectral shift in the position of the ASE peak (by ~18 nm). These observations can be well explained by the variation of the optical field confinement factor with the NPL waveguide thickness and propagation wavelength. This work demonstrates the possibility of fabricating thickness-tunable, large-area three-dimensional superstructures made of NPL building blocks, which can be additively constructed one monolayer at a time. The proposed technique can also be extended to build hybrid NPL films of mixed orientations and allow for precise large-area device engineering.