论文标题

次常规W-代数和主要W-Superalgebras的双重性

Duality of subregular W-algebras and principal W-superalgebras

论文作者

Creutzig, Thomas, Genra, Naoki, Nakatsuka, Shigenori

论文摘要

我们证明了A,B型的次规则W-代数之间的Feigin-Frenkel类型二元性,$ \ Mathfrak型的类型W-Superalgebras {sl}(1 | n),\ Mathfrak {osp}(osp}(osp}(2 | 2n)$。 A型情况证明了Feigin和Semikhatov的猜想。令$(\ Mathfrak {g} _1,\ Mathfrak {g} _2)=(\ Mathfrak {sl} _ {n+1},\ Mathfrak {sl}(1 | n+1)(1 | n+1)) $ r $是$ \ mathfrak {g} _1 $的间隙。令k为一个复杂的数字,$ \ ell $由$ r(k+h^\ vee_1)定义(\ ell+h^\ vee_2)= 1 $,用$ h^\ vee_i $ $ h^\ vee_i $ $ \ mathfrak g_i $的dual coxeter数字。我们的第一个主要结果是,这些双重级别的Heisenberg Cosets $ \ Mathcal C^K(\ Mathfrak G_1)$和$ \ Mathcal c^\ ell(\ Mathfrak G_2)$在这些双重级别上是等级的,即同在c^\ ell(\ Mathfrak g_2)$用于通用k。我们确定了通用水平,并为W-代数的简单商的宇宙库建立了类似的结果。 我们的第二个结果是一种小说的Kazama-Suzuki型coset构造:我们表明,在$ k $ k $ k $ k $ k $ k $ k $ k $ k $ k $ k $ k $ k $ k $ k $ k $ k $ k $ k $ k $ k $ v _ {\ mathbb z} $上是主要w-superalgebra的dual $ $ $ $ \ el e \ e el e \ el e Ell $。相反,主要的W-Superalgebra的对角线Heisenberg coset在级别$ \ ell $ times lattice顶点superalgebra $ v _ {\ sqrt {-1} \ mathbb z} $是二级k的下规则w- algebra。同样,这对于通用的W-Algebras以及简单的商证明了这一点。我们表明,Kazama-Suzuki型结构的结果是,如果简单的dual Level $ \ ell $ \ ell $ \ el $ \ ell $ \ ell $ \ ell $的简单主要W-Algebra对于简单的亚规格w- algebra而言,则简单的主要W-Superalgebra及其Heisenberg coset是合理的和/或C_2-Cofinite。这给出了许多新的C_2 cofinity和合理性结果。

We prove Feigin-Frenkel type dualities between subregular W-algebras of type A, B and principal W-superalgebras of type $\mathfrak{sl}(1|n), \mathfrak{osp}(2|2n)$. The type A case proves a conjecture of Feigin and Semikhatov. Let $(\mathfrak{g}_1,\mathfrak{g}_2) = (\mathfrak{sl}_{n+1},\mathfrak{sl}(1|n+1))$ or $(\mathfrak{so}_{2n+1}, \mathfrak{osp}(2|2n))$ and let $r$ be the lacity of $\mathfrak{g}_1$. Let k be a complex number and $\ell$ defined by $r(k+h^\vee_1)(\ell+h^\vee_2)=1$ with $h^\vee_i$ the dual Coxeter numbers of the $\mathfrak g_i$. Our first main result is that the Heisenberg cosets $\mathcal C^k(\mathfrak g_1)$ and $\mathcal C^\ell(\mathfrak g_2)$ of these W-algebras at these dual levels are isomorphic, i.e. $\mathcal C^k(\mathfrak g_1) \simeq \mathcal C^\ell(\mathfrak g_2)$ for generic k. We determine the generic levels and furthermore establish analogous results for the cosets of the simple quotients of the W-algebras. Our second result is a novel Kazama-Suzuki type coset construction: We show that a diagonal Heisenberg coset of the subregular W-algebra at level $k$ times the lattice vertex superalgebra $V_{\mathbb Z}$ is the principal W-superalgebra at the dual level $\ell$. Conversely a diagonal Heisenberg coset of the principal W-superalgebra at level $\ell$ times the lattice vertex superalgebra $V_{\sqrt{-1}\mathbb Z}$ is the subregular W-algebra at the dual level k. Again this is proven for the universal W-algebras as well as for the simple quotients. We show that a consequence of the Kazama-Suzuki type construction is that the simple principal W-superalgebra and its Heisenberg coset at level $\ell$ are rational and/or C_2-cofinite if the same is true for the simple subregular W-algebra at dual level $\ell$. This gives many new C_2-cofiniteness and rationality results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源