论文标题

与投影品种交集的Lefschetz定理

A Lefschetz theorem for intersections with projective varieties

论文作者

Landesman, Aaron

论文摘要

一个经典的Lefschetz超平面定理的一个版本指出,对于$ u \ subset \ mathbb p^n $,平滑的准标记尺寸至少$ 2 $,而$ h \ cap u $是一般超平面部分,是étalethy thy thy of thy thy thy thy of thy thy thy thy of thy thy thy thy thy thy thy thy thy thy thy thy thy thy thy thy thy thyétaleundamental Guttainal undamaltent $π_1(H \ iefter cap u)$ rirforivire \ rightarr。 We prove a generalization, replacing the hyperplane by a general $\operatorname{PGL}_{n+1}$-translate of an arbitrary projective variety: If $U \subset \mathbb P^n$ is a normal quasi-projective variety, $X$ is a geometrically irreducible projective variety of dimension at least $n + 1 - \dim U$, and $Y$ is a常规$ \ operatoRatorname {pgl} _ {n+1} $ - $ x $的翻译,然后地图$π_1(y \ cap u)\ rightarrowπ_1(u)$是冲销的。

One version of the classical Lefschetz hyperplane theorem states that for $U \subset \mathbb P^n$ a smooth quasi-projective variety of dimension at least $2$, and $H \cap U$ a general hyperplane section, the resulting map on étale fundamental groups $π_1(H \cap U) \rightarrow π_1(U)$ is surjective. We prove a generalization, replacing the hyperplane by a general $\operatorname{PGL}_{n+1}$-translate of an arbitrary projective variety: If $U \subset \mathbb P^n$ is a normal quasi-projective variety, $X$ is a geometrically irreducible projective variety of dimension at least $n + 1 - \dim U$, and $Y$ is a general $\operatorname{PGL}_{n+1}$-translate of $X$, then the map $π_1(Y \cap U) \rightarrow π_1(U)$ is surjective.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源