论文标题

几乎没有双重记忆的构图字体生成

Few-shot Compositional Font Generation with Dual Memory

论文作者

Cha, Junbum, Chun, Sanghyuk, Lee, Gayoung, Lee, Bado, Kim, Seonghyeon, Lee, Hwalsuk

论文摘要

生成一个新的字体库是一项非常富裕的脚本的劳动密集型且耗时的工作。尽管现有的字体生成方法取得了显着的成功,但它们仍存在明显的缺点。他们需要大量的参考图像来生成一个新的字体集,或者仅使用几个样本捕获详细样式。在本文中,我们专注于构图脚本,这是世界上广泛使用的字母系统,每个字形可以被多个组件分解。通过利用组成脚本的组成性,我们提出了一个新颖的字体生成框架,称为双存储器增强字体生成网络(DM-FONT),这使我们能够生成一个只有几个样本的高质量字体库。我们在发电机中采用内存组件和全球封闭式意识来利用组分性。在有关韩国手写字体和泰语印刷字体的实验中,我们观察到,与定量和质量上的最先进的生成方法相比,我们的方法具有忠实风格化的样品的明显更好。源代码可从https://github.com/clovaai/dmfont获得。

Generating a new font library is a very labor-intensive and time-consuming job for glyph-rich scripts. Despite the remarkable success of existing font generation methods, they have significant drawbacks; they require a large number of reference images to generate a new font set, or they fail to capture detailed styles with only a few samples. In this paper, we focus on compositional scripts, a widely used letter system in the world, where each glyph can be decomposed by several components. By utilizing the compositionality of compositional scripts, we propose a novel font generation framework, named Dual Memory-augmented Font Generation Network (DM-Font), which enables us to generate a high-quality font library with only a few samples. We employ memory components and global-context awareness in the generator to take advantage of the compositionality. In the experiments on Korean-handwriting fonts and Thai-printing fonts, we observe that our method generates a significantly better quality of samples with faithful stylization compared to the state-of-the-art generation methods quantitatively and qualitatively. Source code is available at https://github.com/clovaai/dmfont.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源