论文标题
使用时间延迟镜头和类星体的哈勃常数和空间曲率的无关估计
Cosmology-independent Estimate of the Hubble Constant and Spatial Curvature Using Time-delay Lenses and Quasars
论文作者
论文摘要
With the distance sum rule in the Friedmann-Lema\^ıtre-Robertson-Walker metric, model-independent constraints on both the Hubble constant $H_0$ and spatial curvature $Ω_{K}$ can be obtained using strong lensing time-delay data and Type Ia supernova (SN Ia) luminosity distances.但是,该方法受SNE IA的相对低红移的限制。在这里,我们建议使用类星体作为距离指示器,扩展覆盖范围以涵盖强镜头系统的红移范围。我们提供了一种新颖而改进的方法,用于同时确定$ H_0 $和$ω__{k} $。 By applying this technique to the time-delay measurements of seven strong lensing systems and the known ultraviolet versus X-ray luminosity correlation of quasars, we constrain the possible values of both $H_0$ and $Ω_{K}$, and find that $H_0=75.3^{+3.0}_{-2.9}$ km $\rm s^{-1}$ $ \ rm mpc^{ - 1} $和$ω__{k} = -0.01^{+0.18} _ { - 0.17} $。测得的$ω_{k} $与零空间曲率一致,表明与平坦的宇宙没有显着偏差。如果我们将平整度作为先验,我们推断出$ h_0 = 75.3^{+1.9} _ { - 1.9} $ km $ \ rm s^{ - 1} $ $ \ rm mpc^{ - 1} $,代表2.5 \%的精度。如果我们将这些数据与1048 Pastry Pantheon Sne IA相结合,则可以将我们的模型无关的约束进一步改进到$ H_0 = 75.3^{+3.0} _ { - 2.9} $ km $ \ rm s^{ - 1} $ \ rm mpc \ rm mpc^{ - 1} $ \ rm mpc^{ - 1} $和rm rm \ rm \ rm \ rm \ rm \ rm \ rm。 $ω__{k} = 0.05^{+0.16} _ { - 0.14} $。在每种情况下,我们都会发现使用该技术测量的哈勃常数与该值($ \ sim 74 $ km $ $ \ rm s^{ - 1} $ $ \ rm mpc^{ - 1} $)使用局部距离测量,与{\ it planck}相反。
With the distance sum rule in the Friedmann-Lema\^ıtre-Robertson-Walker metric, model-independent constraints on both the Hubble constant $H_0$ and spatial curvature $Ω_{K}$ can be obtained using strong lensing time-delay data and Type Ia supernova (SN Ia) luminosity distances. This method is limited by the relative low redshifts of SNe Ia, however. Here, we propose using quasars as distance indicators, extending the coverage to encompass the redshift range of strong lensing systems. We provide a novel and improved method of determining $H_0$ and $Ω_{K}$ simultaneously. By applying this technique to the time-delay measurements of seven strong lensing systems and the known ultraviolet versus X-ray luminosity correlation of quasars, we constrain the possible values of both $H_0$ and $Ω_{K}$, and find that $H_0=75.3^{+3.0}_{-2.9}$ km $\rm s^{-1}$ $\rm Mpc^{-1}$ and $Ω_{K}=-0.01^{+0.18}_{-0.17}$. The measured $Ω_{K}$ is consistent with zero spatial curvature, indicating that there is no significant deviation from a flat universe. If we use flatness as a prior, we infer that $H_0=75.3^{+1.9}_{-1.9}$ km $\rm s^{-1}$ $\rm Mpc^{-1}$, representing a precision of 2.5\%. If we further combine these data with the 1048 current Pantheon SNe Ia, our model-independent constraints can be further improved to $H_0=75.3^{+3.0}_{-2.9}$ km $\rm s^{-1}$ $\rm Mpc^{-1}$ and $Ω_{K}=0.05^{+0.16}_{-0.14}$. In every case, we find that the Hubble constant measured with this technique is strongly consistent with the value ($\sim 74$ km $\rm s^{-1}$ $\rm Mpc^{-1}$) measured using the local distance ladder, as opposed to the value optimized by {\it Planck}.