论文标题

$ j $ function的模糊

Blurrings of the $j$-function

论文作者

Aslanyan, Vahagn, Kirby, Jonathan

论文摘要

受指数函数模糊的想法的启发,我们定义了$ j $功能及其衍生物的模糊变体,其中模糊的是由$ \ rm {gl} _2 _2(\ mathbb {c}})的子组的作用给出。对于密集的亚组(在复杂拓扑中),我们证明了存在的封闭定理,该定理指出,所有方程式都以相应的$ j $模糊为衍生物具有复杂的解决方案,除非有功能性超越原因,使它们不应该。对于没有衍生物的$ j $功能,我们证明了一个更强的定理,即$ j $的生存封闭性是由子组的作用模糊的,该子组以$ \ rm {gl} _2^+(\ mathbb {r})的浓度致密,但不一定在$ \ rm \ rm {$ {$ {$ {$ {c.2(c)中。 我们还表明,对于一个适当选择的可计数代数封闭的子字段$ c \ subseteq \ mathbb {c} $,复杂字段增强了谓词,因为$ \ rm {gl} _2 _2(c)$模糊$ j $ function $ j $ function $ j $ j $ function在$ j $ function上,尤其是$ - $ - $ - $ -Stame。

Inspired by the idea of blurring the exponential function, we define blurred variants of the $j$-function and its derivatives, where blurring is given by the action of a subgroup of $\rm{GL}_2(\mathbb{C})$. For a dense subgroup (in the complex topology) we prove an Existential Closedness theorem which states that all systems of equations in terms of the corresponding blurred $j$ with derivatives have complex solutions, except where there is a functional transcendence reason why they should not. For the $j$-function without derivatives we prove a stronger theorem, namely, Existential Closedness for $j$ blurred by the action of a subgroup which is dense in $\rm{GL}_2^+(\mathbb{R})$, but not necessarily in $\rm{GL}_2(\mathbb{C})$. We also show that for a suitably chosen countable algebraically closed subfield $C \subseteq \mathbb{C}$, the complex field augmented with a predicate for the blurring of the $j$-function by $\rm{GL}_2(C)$ is model theoretically tame, in particular, $ω$-stable and quasiminimal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源