论文标题

在理性表面上的最小通用曲线的本地不变

Local invariants of minimal generic curves on rational surfaces

论文作者

Cogolludo-Agustín, José Ignacio, László, Tamás, Martín-Morales, Jorge, Némethi, András

论文摘要

让(C,0)在正常表面奇异性(x,0)中减少曲线胚芽。主要目标是从嵌入的拓扑结构中恢复抽象曲线(C,0)的三角洲不变性。每当(C,0)最小通用时,我们就会给出明确的公式,并且(x,0)是理性的(作为作者以前的作品的延续)。另外,我们证明,如果(x,0)是商奇异​​性,则(c,0)的三角洲不变仅接受r-1或r的值,其中r是(c,c,0)的数字或不可约成分。 (R-1意识到极端下限,仅适用于“普通r-tuples”。)

Let (C,0) be a reduced curve germ in a normal surface singularity (X,0). The main goal is to recover the delta invariant of the abstract curve (C,0) from the topology of the embedding. We give explicit formulae whenever (C,0) is minimal generic and (X,0) is rational (as a continuation of previous works of the authors). Additionally we prove that if (X,0) is a quotient singularity, then the delta invariant of (C,0) only admits the values r-1 or r, where r is the number or irreducible components of (C,0). (r-1 realizes the extremal lower bound, valid only for `ordinary r-tuples'.)

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源