论文标题

非左右拓扑量子临界的重新归一化组方法

A renormalization group approach to non-Hermitian topological quantum criticality

论文作者

Zhou, Boran, Wang, Rui, Wang, Baigeng

论文摘要

对称性阶段之间的临界过渡点被描述为重新归一化组(RG)理论中的固定点。我们表明,遵循标准的威尔逊(Wilsonian)程序来追溯大型动量模式,这个众所周知的事实可能会在非热门系统中崩溃。基于非热的Su-Schrieffer-Hegger(SSH)型模型,我们提出了一种实际空间拆卸方案,以研究拓扑和琐碎阶段之间的关键性。我们提供具体的示例和分析证明,以表明真实空间方案完美地克服了标准方法的不足,尤其是在某种意义上,它始终将系统保存为临界点,即RG下的固定点。提出的方法还可以通过排除无关的操作员来大大简化复杂非热模型的关键点的搜索。这些结果为相互作用的非热量子系统迈出了更先进的基于RG的技术。

Critical transition points between symmetry-broken phases are characterized as fixed points in the renormalization group (RG) theory. We show that, following the standard Wilsonian procedure that traces out the large momentum modes, this well known fact can break down in non-Hermitian systems. Based on non-Hermitian Su-Schrieffer-Hegger (SSH)-type models, we propose a real-space decimation scheme to study the criticality between the topological and trivial phase. We provide concrete examples and an analytic proof to show that the real-space scheme perfectly overcomes the insufficiency of the standard method, especially in the sense that it always preserves the system at criticality as fixed points under RG. The proposed method can also greatly simplify the search of critical points for complicated non-Hermitian models by ruling out the irrelevant operators. These results pave the way towards more advanced RG-based techniques for the interacting non-Hermitian quantum systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源