论文标题

离散化在预测中的有效性:神经时间序列模型的实证研究

The Effectiveness of Discretization in Forecasting: An Empirical Study on Neural Time Series Models

论文作者

Rabanser, Stephan, Januschowski, Tim, Flunkert, Valentin, Salinas, David, Gasthaus, Jan

论文摘要

近年来,基于深度学习的时间序列建模技术已经取得了许多进步,尤其是在数据丰富的环境中以及学习全球模型的主要目的,这些模型可以在多个时间序列中提取模式。尽管经常在先前的工作中注意到适当数据预处理和缩放的关键重要性,但大多数研究都集中在改善模型架构上。在本文中,我们凭经验研究了数据输入和输出转换对几种神经预测架构的预测性能的影响。特别地,我们研究了几种形式的数据套在一起的有效性,即将实值时间序列转换为分类时间序列,与前进,经常性神经网络和基于卷积的序列模型相结合时。在这些模型非常成功的许多非遗产应用程序中,模型输入和输出是绝对的(例如,来自自然语言处理应用中固定词汇的单词或计算机视觉中量化的像素颜色强度)。对于通常进行时间序列的预测应用程序,已经提出了各种临时数据转换,但尚未系统地比较。为了解决这个问题,我们评估了与不同类型的数据缩放和套筒结合使用上述模型类实例的预测准确性。我们发现,与使用归一化的实价输入相比,Binning几乎总是提高性能,但是所选择的特定类型的binning的重要性较小。

Time series modeling techniques based on deep learning have seen many advancements in recent years, especially in data-abundant settings and with the central aim of learning global models that can extract patterns across multiple time series. While the crucial importance of appropriate data pre-processing and scaling has often been noted in prior work, most studies focus on improving model architectures. In this paper we empirically investigate the effect of data input and output transformations on the predictive performance of several neural forecasting architectures. In particular, we investigate the effectiveness of several forms of data binning, i.e. converting real-valued time series into categorical ones, when combined with feed-forward, recurrent neural networks, and convolution-based sequence models. In many non-forecasting applications where these models have been very successful, the model inputs and outputs are categorical (e.g. words from a fixed vocabulary in natural language processing applications or quantized pixel color intensities in computer vision). For forecasting applications, where the time series are typically real-valued, various ad-hoc data transformations have been proposed, but have not been systematically compared. To remedy this, we evaluate the forecasting accuracy of instances of the aforementioned model classes when combined with different types of data scaling and binning. We find that binning almost always improves performance (compared to using normalized real-valued inputs), but that the particular type of binning chosen is of lesser importance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源