论文标题

M2GRL:网络尺度推荐系统的多任务多视图图表学习框架

M2GRL: A Multi-task Multi-view Graph Representation Learning Framework for Web-scale Recommender Systems

论文作者

Wang, Menghan, Lin, Yujie, Lin, Guli, Yang, Keping, Wu, Xiao-ming

论文摘要

将图表表示学习与多视图数据(侧面信息)相结合是行业的趋势。大多数现有方法可以归类为\ emph {Multi-View表示Fusion};他们首先构建一个图形,然后将多视图数据集成到图中每个节点的单个紧凑型表示中。但是,这些方法在工程和算法方面都引起了人们的关注:1)多视图数据在行业中丰富且有益,并且可能超过一个单个向量的能力,以及2)归纳偏见可能会引入,因为多视图数据通常来自不同的分布。在本文中,我们使用\ emph {Multi-View表示对齐方式}方法来解决此问题。特别是,我们提出了一个多任务多视图图表表示框架(M2GRL),以从用于网络尺度推荐系统的多视图图中学习节点表示形式。 M2GRL为每个单视图数据构造一个图形,从多个图形中学习多个单独的表示,并执行对齐方式对跨视图的关系。 M2GRL选择一个多任务学习范式来共同学习视图内表示和跨视图。此外,M2GRL还采用均质的不确定性来适应训练期间任务的损失权重。我们在淘宝部署M2GRL,并以570亿个例子进行训练。根据离线指标和在线A/B测试,M2GRL的表现明显优于其他最先进的算法。对汤宝(Tamobao)中多样性建议的进一步探索显示了利用\ method {}产生的多种表示形式的有效性,我们认为这是各种重点的各种工业推荐任务的有希望的方向。

Combining graph representation learning with multi-view data (side information) for recommendation is a trend in industry. Most existing methods can be categorized as \emph{multi-view representation fusion}; they first build one graph and then integrate multi-view data into a single compact representation for each node in the graph. However, these methods are raising concerns in both engineering and algorithm aspects: 1) multi-view data are abundant and informative in industry and may exceed the capacity of one single vector, and 2) inductive bias may be introduced as multi-view data are often from different distributions. In this paper, we use a \emph{multi-view representation alignment} approach to address this issue. Particularly, we propose a multi-task multi-view graph representation learning framework (M2GRL) to learn node representations from multi-view graphs for web-scale recommender systems. M2GRL constructs one graph for each single-view data, learns multiple separate representations from multiple graphs, and performs alignment to model cross-view relations. M2GRL chooses a multi-task learning paradigm to learn intra-view representations and cross-view relations jointly. Besides, M2GRL applies homoscedastic uncertainty to adaptively tune the loss weights of tasks during training. We deploy M2GRL at Taobao and train it on 57 billion examples. According to offline metrics and online A/B tests, M2GRL significantly outperforms other state-of-the-art algorithms. Further exploration on diversity recommendation in Taobao shows the effectiveness of utilizing multiple representations produced by \method{}, which we argue is a promising direction for various industrial recommendation tasks of different focus.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源