论文标题

等光谱和平方根cholesky光子晶格

Isospectral and square root Cholesky photonic lattices

论文作者

Berumen, P. I. Martinez, Rodríguez-Lara, B. M.

论文摘要

Cholesky分解提供了光子晶格,这些晶格是同一伴侣或其他耦合波导阵列的平方根。该过程类似于超对称量子力学中的过程。但是,cholesky的分解需要初始正定模式耦合矩阵,并且所得的超对称性总是断裂的。也就是说,同一合作伙伴的范围与初始模式耦合矩阵相同。可以强迫分解伴侣的范围减小,但特征性超对称交织丢失。例如,我们构建了带有循环对称性的波导项链的Cholesky同志伴侣和平方根。我们使用电信C波段的实验参数来构建这些Cholesky光子晶格的有限元模型,以与我们的分析预测吻合。

Cholesky factorization provides photonic lattices that are the isospectral partners or the square root of other arrays of coupled waveguides. The procedure is similar to that used in supersymmetric quantum mechanics. However, Cholesky decomposition requires initial positive definite mode coupling matrices and the resulting supersymmetry is always broken. That is, the isospectral partner has the same range than the initial mode coupling matrix. It is possible to force a decomposition where the range of the partner is reduced but the characteristic supersymmetric intertwining is lost. As an example, we construct the Cholesky isospectral partner and the square root of a waveguide necklace with cyclic symmetry. We use experimental parameters from telecommunication C-band to construct a finite element model of these Cholesky photonics lattices to good agreement with our analytic prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源