论文标题

在及最后一段渗透中的极限常数中

On Limit Constants in Last Passage Percolation in Transitive Tournaments

论文作者

Dutta, Kunal

论文摘要

在边缘权重是独立的Bernoulli随机变量的情况下,我们研究了\ emph {最后一个通道渗透}问题。鉴于边缘上有随机权重的$ n $节点上的及时锦标赛,最后一个段落的渗透问题旨在找到最重的路径的重量$ x_n $,其中路径的重量是边缘上的权重的总和。我们给出了复发关系,并使用它来获得$ x_n $的概率生成函数(双变量)生成功能。这还提供了$ \ mathbb {e} [x_n] $的精确组合表达式,该$由Yuster [\ Emph {disc。应用。数学。},2017年]。我们进一步确定$ x_n $的限制定律中的扩展常数。定义$β_{tr}(p):= \ lim_ {n \ to \ infty} \ frac {\ mathbb {e} [x_n]} {n-1} $。使用奇异性分析,我们显示\ [β_{tr}(p)= \ left(\ sum_ {n \ geq 1}(1-p)^{n \ select 2} \ right)^{ - 1}。特别是,$β_{tr}(0.5)= \ left(\ sum_ {n \ geq 1} 2} 2^{ - {n \ select 2}}} \ right)^{ - 1} = 0.60914971106 ... $。这解决了确定由Yuster发起的$β_{tr}(0.5)$的值的问题。 $β_{tr}(p)$也是Foss,Martin和Schmidt [\ Emph {Ann的强大定律中$ x_n $的大定律的限制值。应用。 probab。},2014年]。我们还在Foss等人证明的$ x_n $的功能中心限制定理中得出缩放常数。

We investigate the \emph{last passage percolation} problem on transitive tournaments, in the case when the edge weights are independent Bernoulli random variables. Given a transitive tournament on $n$ nodes with random weights on its edges, the last passage percolation problem seeks to find the weight $X_n$ of the heaviest path, where the weight of a path is the sum of the weights on its edges. We give a recurrence relation and use it to obtain a (bivariate) generating function for the probability generating function of $X_n$. This also gives exact combinatorial expressions for $\mathbb{E}[X_n]$, which was stated as an open problem by Yuster [\emph{Disc. Appl. Math.}, 2017]. We further determine scaling constants in the limit laws for $X_n$. Define $β_{tr}(p) := \lim_{n\to \infty} \frac{\mathbb{E}[X_n]}{n-1}$. Using singularity analysis, we show \[ β_{tr}(p) = \left(\sum_{n\geq 1}(1-p)^{n\choose 2}\right)^{-1}. \] In particular, $β_{tr}(0.5) = \left(\sum_{n\geq 1} 2^{-{n\choose 2}}\right)^{-1} = 0.60914971106...$. This settles the question of determining the value of $β_{tr}(0.5)$, initiated by Yuster. $β_{tr}(p)$ is also the limiting value in the strong law of large numbers for $X_n$, given by Foss, Martin, and Schmidt [\emph{Ann. Appl. Probab.}, 2014]. We also derive the scaling constants in the functional central limit theorem for $X_n$ proved by Foss et al.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源