论文标题
神经常见微分方程基于复发性神经网络模型
Neural Ordinary Differential Equation based Recurrent Neural Network Model
论文作者
论文摘要
神经微分方程是神经网络家族中有希望的新成员。它们显示了微分方程对时间序列数据分析的潜力。在本文中,通过新扩展探索了普通微分方程(ODE)的强度。这项工作的主要目标是回答以下问题:(i)〜是否可以使用ODE重新定义现有的神经网络模型? (ii)〜神经odes可以解决连续时间序列的现有神经网络模型的不规则采样率挑战,即长度和动态性质,(iii)〜如何减少现有神经系统的训练和评估时间?这项工作利用了ODE的数学基础,以重新设计传统RNN,例如长期记忆(LSTM)和封闭式复发单元(GRU)。本文的主要贡献是说明两个基于ODE的RNN模型(GRU-ODE模型和LSTM-ODE)的设计,它们可以在任何时间点使用ODE求解器在任何时间点计算隐藏状态和单元格状态。这些模型将隐藏状态和细胞状态的计算开销减少了很多。然后证明了以不规则抽样率进行学习连续时间序列的这两个新模型的性能评估。实验表明,这些新的基于ODE的RNN模型所需的训练时间少于潜在的ODES和常规神经ODE。它们可以快速达到更高的精度,并且神经网络的设计比以前的神经系统更简单。
Neural differential equations are a promising new member in the neural network family. They show the potential of differential equations for time series data analysis. In this paper, the strength of the ordinary differential equation (ODE) is explored with a new extension. The main goal of this work is to answer the following questions: (i)~can ODE be used to redefine the existing neural network model? (ii)~can Neural ODEs solve the irregular sampling rate challenge of existing neural network models for a continuous time series, i.e., length and dynamic nature, (iii)~how to reduce the training and evaluation time of existing Neural ODE systems? This work leverages the mathematical foundation of ODEs to redesign traditional RNNs such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The main contribution of this paper is to illustrate the design of two new ODE-based RNN models (GRU-ODE model and LSTM-ODE) which can compute the hidden state and cell state at any point of time using an ODE solver. These models reduce the computation overhead of hidden state and cell state by a vast amount. The performance evaluation of these two new models for learning continuous time series with irregular sampling rate is then demonstrated. Experiments show that these new ODE based RNN models require less training time than Latent ODEs and conventional Neural ODEs. They can achieve higher accuracy quickly, and the design of the neural network is simpler than, previous neural ODE systems.