论文标题

通过多任务选择,学习从Brightfield显微镜中分割群集的变形虫细胞,并选择自适应重量

Learning to segment clustered amoeboid cells from brightfield microscopy via multi-task learning with adaptive weight selection

论文作者

Sarkar, Rituparna, Mukherjee, Suvadip, Labruyère, Elisabeth, Olivo-Marin, Jean-Christophe

论文摘要

从显微镜图像中检测和分割单个细胞对各种生命科学应用至关重要。由于对比度和强度异质性差,传统的细胞分割工具通常不适合在Brightfield显微镜中应用,并且只有一个小子集适用于群集中的细胞。在这方面,我们在多任务学习范式中介绍了一种新型的监督细胞分割技术。基于区域和细胞边界检测的多任务损失的组合用于提高网络的预测效率。学习问题是在一个新颖的Min-Max框架中提出的,该框架可以自动估计超参数以自动方式进行估计。区域和细胞边界预测是通过形态操作和主动轮廓模型合并到分割单个细胞的。 所提出的方法特别适合从无需手动干预的情况下从Brightfield显微镜图像中触摸细胞。从数量上讲,我们在验证集上观察到总体骰子得分为0.93,在最近的无监督方法上的提高超过15.9%,并表现优于受欢迎的监督U-NET算法的平均$ 5.8 \%$。

Detecting and segmenting individual cells from microscopy images is critical to various life science applications. Traditional cell segmentation tools are often ill-suited for applications in brightfield microscopy due to poor contrast and intensity heterogeneity, and only a small subset are applicable to segment cells in a cluster. In this regard, we introduce a novel supervised technique for cell segmentation in a multi-task learning paradigm. A combination of a multi-task loss, based on the region and cell boundary detection, is employed for an improved prediction efficiency of the network. The learning problem is posed in a novel min-max framework which enables adaptive estimation of the hyper-parameters in an automatic fashion. The region and cell boundary predictions are combined via morphological operations and active contour model to segment individual cells. The proposed methodology is particularly suited to segment touching cells from brightfield microscopy images without manual interventions. Quantitatively, we observe an overall Dice score of 0.93 on the validation set, which is an improvement of over 15.9% on a recent unsupervised method, and outperforms the popular supervised U-net algorithm by at least $5.8\%$ on average.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源