论文标题

对离散概率程序进行精确推断

Scaling Exact Inference for Discrete Probabilistic Programs

论文作者

Holtzen, Steven, Broeck, Guy Van den, Millstein, Todd

论文摘要

概率编程语言(PPLS)是表示和推理概率模型的一种表达方式。概率推断的计算挑战仍然是实践中应用PPL的主要障碍。推论从根本上很难,因此没有一种适合所有解决方案。在这项工作中,我们针对一类重要类别的概率程序的可扩展推断:那些概率分布的程序是离散的。离散的分布在许多领域都很常见,包括文本分析,网络验证,人工智能和图形分析,但事实证明它们对现有PPL具有挑战性。 我们开发了一种名为DICE的域特异性概率编程语言,该语言采用了一种新的方法来进行精确的离散概率程序推论。 DICE利用程序结构是为了分解推理,使我们能够对具有数十万个随机变量的概率程序执行精确的推断。我们的关键技术贡献是从离散概率程序到加权模型计数(WMC)的新降低。这种还原将分布的结构与其参数分开,从而使逻辑推理工具可以利用该结构来用于概率推断。我们(1)展示了如何在构图上减少对WMC的骰子推断,(2)证明此汇编相对于表示的语义正确,(3)(3)经验证明了对先前方法的性能益处,并且(4)分析允许骰子的结构类型,使骰子可以扩展到大概率计划。

Probabilistic programming languages (PPLs) are an expressive means of representing and reasoning about probabilistic models. The computational challenge of probabilistic inference remains the primary roadblock for applying PPLs in practice. Inference is fundamentally hard, so there is no one-size-fits all solution. In this work, we target scalable inference for an important class of probabilistic programs: those whose probability distributions are discrete. Discrete distributions are common in many fields, including text analysis, network verification, artificial intelligence, and graph analysis, but they prove to be challenging for existing PPLs. We develop a domain-specific probabilistic programming language called Dice that features a new approach to exact discrete probabilistic program inference. Dice exploits program structure in order to factorize inference, enabling us to perform exact inference on probabilistic programs with hundreds of thousands of random variables. Our key technical contribution is a new reduction from discrete probabilistic programs to weighted model counting (WMC). This reduction separates the structure of the distribution from its parameters, enabling logical reasoning tools to exploit that structure for probabilistic inference. We (1) show how to compositionally reduce Dice inference to WMC, (2) prove this compilation correct with respect to a denotational semantics, (3) empirically demonstrate the performance benefits over prior approaches, and (4) analyze the types of structure that allow Dice to scale to large probabilistic programs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源