论文标题
简要触及光纤通信的数字信号处理深度学习的实验研究
Experimental Investigation of Deep Learning for Digital Signal Processing in Short Reach Optical Fiber Communications
论文作者
论文摘要
我们研究了基于复发性神经网络(RNN)的自动编码器实验性能增强的方法,以通过分散非线性通道进行通信。特别是,我们的重点是最近提出的滑动窗口双向RNN(SBRNN)光纤自动编码器。我们表明,在接收器处调整序列估计算法中的处理窗口可改善在通道模型上训练的简单系统的覆盖范围,并在传输链路上应用“按原样”应用。此外,收集的实验数据用于优化接收器神经网络参数,使得以低于6.7%的硬性验证前向前误差校正阈值高达70公里,最高70公里,在20 km时以84 GB/s的距离发射42 GB/s。在实验数据上优化的数字信号处理(DSP)的研究扩展到脉冲振幅调制,接收器使用馈电窗口序列估计使用馈送或复发性神经网络以及经典的非线性伏特拉均衡。我们的结果表明,对于固定的算法记忆,基于深度学习的DSP可以提高BER的性能,从而增加了系统的影响范围。
We investigate methods for experimental performance enhancement of auto-encoders based on a recurrent neural network (RNN) for communication over dispersive nonlinear channels. In particular, our focus is on the recently proposed sliding window bidirectional RNN (SBRNN) optical fiber autoencoder. We show that adjusting the processing window in the sequence estimation algorithm at the receiver improves the reach of simple systems trained on a channel model and applied "as is" to the transmission link. Moreover, the collected experimental data was used to optimize the receiver neural network parameters, allowing to transmit 42 Gb/s with bit-error rate (BER) below the 6.7% hard-decision forward error correction threshold at distances up to 70km as well as 84 Gb/s at 20 km. The investigation of digital signal processing (DSP) optimized on experimental data is extended to pulse amplitude modulation with receivers performing sliding window sequence estimation using a feed-forward or a recurrent neural network as well as classical nonlinear Volterra equalization. Our results show that, for fixed algorithm memory, the DSP based on deep learning achieves an improved BER performance, allowing to increase the reach of the system.