论文标题

数据驱动的飞机轨迹预测通过深层模仿学习

Data Driven Aircraft Trajectory Prediction with Deep Imitation Learning

论文作者

Bastas, Alevizos, Kravaris, Theocharis, Vouros, George A.

论文摘要

全球当前的空中交通管理(ATM)系统在可预测性,效率和成本效益方面已达到限制。全球各地提出了面向轨迹的转换,需要高保真飞机的轨迹计划和预测能力,从而有效地支持轨迹生命周期。最近提出的数据驱动轨迹预测方法提供了有希望的结果。在本文中,我们将数据驱动的轨迹预测问题作为模仿学习任务,我们旨在模仿专家“塑造”轨迹。为了实现这一目标,我们提出了一个综合框架,其中包括具有轨迹聚类和分类方法的管道中的艺术方法的生成对抗性模仿学习状态。与其他方法相比,这种方法可以为整个轨迹(即,在预测范围内进行预测范围直至到达目的地)的准确预测既可以在特定的时刻(即在特定时间瞬间开始在出发机场开始),又在战术上(即在任何状态下飞行时从飞行中)进行与艺术状态相比。

The current Air Traffic Management (ATM) system worldwide has reached its limits in terms of predictability, efficiency and cost effectiveness. Different initiatives worldwide propose trajectory-oriented transformations that require high fidelity aircraft trajectory planning and prediction capabilities, supporting the trajectory life cycle at all stages efficiently. Recently proposed data-driven trajectory prediction approaches provide promising results. In this paper we approach the data-driven trajectory prediction problem as an imitation learning task, where we aim to imitate experts "shaping" the trajectory. Towards this goal we present a comprehensive framework comprising the Generative Adversarial Imitation Learning state of the art method, in a pipeline with trajectory clustering and classification methods. This approach, compared to other approaches, can provide accurate predictions for the whole trajectory (i.e. with a prediction horizon until reaching the destination) both at the pre-tactical (i.e. starting at the departure airport at a specific time instant) and at the tactical (i.e. from any state while flying) stages, compared to state of the art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源