论文标题
无确定性和概率的单子和定量方程理论
Monads and Quantitative Equational Theories for Nondeterminism and Probability
论文作者
论文摘要
概率分布的凸单是一种众所周知的工具,用于建模非确定性和概率计算效应的组合。在这项工作中,我们通过Hausdorff和Kantorovich公制升降机将该单元从集合类别提升为度量空间类别。我们的主要结果是使用Mardare,Panangaden和Plotkin最近引入的定量代数的框架,介绍了凸半层次的定量方程理论。
The monad of convex sets of probability distributions is a well-known tool for modelling the combination of nondeterministic and probabilistic computational effects. In this work we lift this monad from the category of sets to the category of metric spaces, by means of the Hausdorff and Kantorovich metric liftings. Our main result is the presentation of this lifted monad in terms of the quantitative equational theory of convex semilattices, using the framework of quantitative algebras recently introduced by Mardare, Panangaden and Plotkin.