论文标题
OGLE-2006-BLG-284L恒星二进制系统中的气体巨型星球
A Gas Giant Planet in the OGLE-2006-BLG-284L Stellar Binary System
论文作者
论文摘要
我们介绍了微透明事件OGE-2006-BLG-284的分析,该镜头系统由两个恒星和一个质量比$ q_p =(1.26 \ pm 0.19)\ times 10^{ - 3} $组成。两颗星的质量比为$ q_s = 0.289 \ pm 0.011 $,他们的预计分离为$ s_s = 2.1 \ pm 0.7 \,$ au,而主球与主球的预计分离为$ s_p = 2.2 \ pm pm 0.8 \,$ au,$ au。为了使该镜头系统具有稳定的轨道,将一级恒星和次要恒星或行星和一颗恒星的三维分离必须比这些预测的分离大得多。由于我们不知道是这种情况,因此系统可以包括环形行星。由于没有测量微透析视差效应或镜头系统亮度,因此我们只能对透镜系统质量和亮度进行粗糙的贝叶斯估计。我们发现$ M_ {l1} = 0.35^{+0.30} _ { - 0.20} \,m_ \ odot $,$ m_ {l2} = 0.10^{+0.09} _ {+0.09} _ { - 0.06} _ { - 0.06}} _ { - 0.06} \,m_ \ odot $,和m _ \ odot $,和$ m__p = 0.35^{+0.30} _ { - 0.20} \,m_ \ odot $,$ m_ { - 0.20} \,M_ \ odot $,m_ \ odot $,和$ m_p = 144^{+126} _ { - 82} \,m_ \ oplus $,以及$ k $ -band亮度的组合亮度的$ k_l = 19.7^{+0.7^{+0.7} _ { - 1.0} $。镜头和源系统之间的分离将为$ \ sim 90 \,$ 2020中的$ MAS,因此应该可以通过随访自适应光学器件或哈勃太空望远镜观察来检测主机系统。
We present the analysis of microlensing event OGLE-2006-BLG-284, which has a lens system that consists of two stars and a gas giant planet with a mass ratio of $q_p = (1.26\pm 0.19) \times 10^{-3}$ to the primary. The mass ratio of the two stars is $q_s = 0.289\pm 0.011$, and their projected separation is $s_s = 2.1\pm 0.7\,$AU, while the projected separation of the planet from the primary is $s_p = 2.2\pm 0.8\,$AU. For this lens system to have stable orbits, the three-dimensional separation of either the primary and secondary stars or the planet and primary star must be much larger than that these projected separations. Since we do not know which is the case, the system could include either a circumbinary or a circumstellar planet. Because there is no measurement of the microlensing parallax effect or lens system brightness, we can only make a rough Bayesian estimate of the lens system masses and brightness. We find host star and planet masses of $M_{L1} = 0.35^{+0.30}_{-0.20}\,M_\odot$, $M_{L2} = 0.10^{+0.09}_{-0.06}\,M_\odot$, and $m_p = 144^{+126}_{-82}\,M_\oplus$, and the $K$-band magnitude of the combined brightness of the host stars is $K_L = 19.7^{+0.7}_{-1.0}$. The separation between the lens and source system will be $\sim 90\,$mas in mid-2020, so it should be possible to detect the host system with follow-up adaptive optics or Hubble Space Telescope observations.