论文标题

最小直接产品

Minimal direct products

论文作者

Dirbák, Matúš, Snoha, Ľubomír, Špitalský, Vladimír

论文摘要

如果空间承认最小的连续自我图,则称为最小空间。我们举例说明了可迁移的连续$ x $的例子,同时承认同件同态和最小的非不可逆转的地图,它们的平方$ x \ times x $不是最小的,即,他们承认他们既不是最小的同态性,也不是最小的无关地图,也不是最小的无关地图,因此为bruin提供了一个确定的作者,并在bruin中提供了一个确定的作者,并在bruin中提出了一个问题。 Boroński,Clark和Oprocha在仅考虑同构的情况下提供了答案。 然后,我们介绍和研究产品最小性的概念。如果对于每个最小系统$(x,t)$,我们称之为紧凑的Metrizable Space $ y $ y $ product-Minimal,由Metrizable Space $ X $和连续的Selfmap $ t $给出,则有一个连续的Map $ s \ s \ colon y \ y $ $ to y $,因此产品$(x \ times y,t \ times y,t \ times t \ times s)是最小的。如果这样的地图$ s $总是存在于同构中的类别中,我们说$ y $是一个同源产品的小空间。我们表明,许多最小空间的经典示例,包括紧凑型连接的Metrizable Abelian群体,紧凑的连接歧管而没有边界承认非平整紧凑型连接的Lie群的自由作用,实际上许多其他的是同型产品。

A space is called minimal if it admits a minimal continuous selfmap. We give examples of metrizable continua $X$ admitting both minimal homeomorphisms and minimal noninvertible maps, whose squares $X\times X$ are not minimal, i.e., they admit neither minimal homeomorphisms nor minimal noninvertible maps, thus providing a definitive answer to a question posed by Bruin, Kolyada and the second author in 2003. (In 2018, Boroński, Clark and Oprocha provided an answer in the case when only homeomorphisms were considered.) Then we introduce and study the notion of product-minimality. We call a compact metrizable space $Y$ product-minimal if, for every minimal system $(X,T)$ given by a metrizable space $X$ and a continuous selfmap $T$, there is a continuous map $S\colon Y\to Y$ such that the product $(X\times Y,T\times S)$ is minimal. If such a map $S$ always exists in the class of homeomorphisms, we say that $Y$ is a homeo-product-minimal space. We show that many classical examples of minimal spaces, including compact connected metrizable abelian groups, compact connected manifolds without boundary admitting a free action of a nontrivial compact connected Lie group, and many others, are in fact homeo-product-minimal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源