论文标题
在波导中建立无形障碍的延续方法
A continuation method for building invisible obstacles in waveguides
论文作者
论文摘要
我们考虑在一个方向不受限的波导中,在给定的波数字中传播声波的传播。我们解释了如何构建以物理系数$ρ$为特征的可渗透障碍,这些障碍物以各种方式看不见。特别是,我们将注意力集中在反射中的隐形上(反射矩阵为零),反射和传播中的隐形性(散射矩阵与没有障碍物相同)和相对隐形性(两个不同的障碍物具有相同的散射矩阵)。为了研究这些问题,我们使用一种持续方法,该方法需要计算散射矩阵$ \ mathbb {s}(ρ)$以及相对于材料索引$ d \ mathbb {s}(ρ)$的差异。该方法的理由还需要证明从$ d \ mathbb {s}(ρ)$构建的精心选择功能的抽象结果。当波数字只有一种模式可以传播时,我们提供了单座制度中结果的完整证明。我们提供所有成分以在多模式制度中实现该方法。我们通过提出数值结果来结束文章以说明分析。
We consider the propagation of acoustic waves at a given wavenumber in a waveguide which is unbounded in one direction. We explain how to construct penetrable obstacles characterized by a physical coefficient $ρ$ which are invisible in various ways. In particular, we focus our attention on invisibility in reflection (the reflection matrix is zero), invisibility in reflection and transmission (the scattering matrix is the same as if there were no obstacle) and relative invisibility (two different obstacles have the same scattering matrix). To study these problems, we use a continuation method which requires to compute the scattering matrix $\mathbb{S}(ρ)$ as well as its differential with respect to the material index $d\mathbb{S}(ρ)$. The justification of the method also needs for the proof of abstract results of ontoness of well-chosen functionals constructed from the terms of $d\mathbb{S}(ρ)$. We provide a complete proof of the results in monomode regime when the wavenumber is such that only one mode can propagate. And we give all the ingredients to implement the method in multimode regime. We end the article by presenting numerical results to illustrate the analysis.