论文标题

曼丹:布尔函数合成的数据驱动方法

Manthan: A Data Driven Approach for Boolean Function Synthesis

论文作者

Golia, Priyanka, Roy, Subhajit, Meel, Kuldeep S.

论文摘要

布尔功能综合是计算机科学中具有广泛应用的计算机科学中的一个基本问题,并且见证了兴趣的激增,从而在过去十年中逐渐改进了技术。尽管有强烈的算法开发,但仍有许多问题超出了最先进的技术。由机器学习进展的动机,我们提出了曼坦(Manthan),这是一种新型的数据驱动方法,用于布尔功能合成。曼丹将功能合成视为一个分类问题,依赖于数据生成的约束采样的进步以及自动推理的进步,以实现新颖的证明引导和可证明的验证。在对609个基准测试的广泛评估中,我们证明了曼丹在目前的最新状态上有了显着改善,与280相比,解决了356个基准,这是通过技术状态技术最大的解决方案。因此,我们证明了与当前最新状态相比,增加了76个基准。此外,曼丹解决了60个基准,即最新技术的当前状态无法解决。加上我们的详细分析,重大的绩效改进突出了机器学习,限制采样和自动推理的交集中未来工作的几种有趣的途径。

Boolean functional synthesis is a fundamental problem in computer science with wide-ranging applications and has witnessed a surge of interest resulting in progressively improved techniques over the past decade. Despite intense algorithmic development, a large number of problems remain beyond the reach of the state of the art techniques. Motivated by the progress in machine learning, we propose Manthan, a novel data-driven approach to Boolean functional synthesis. Manthan views functional synthesis as a classification problem, relying on advances in constrained sampling for data generation, and advances in automated reasoning for a novel proof-guided refinement and provable verification. On an extensive and rigorous evaluation over 609 benchmarks, we demonstrate that Manthan significantly improves upon the current state of the art, solving 356 benchmarks in comparison to 280, which is the most solved by a state of the art technique; thereby, we demonstrate an increase of 76 benchmarks over the current state of the art. Furthermore, Manthan solves 60 benchmarks that none of the current state of the art techniques could solve. The significant performance improvements, along with our detailed analysis, highlights several interesting avenues of future work at the intersection of machine learning, constrained sampling, and automated reasoning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源