论文标题
完全脐带submanifolds中的伪里曼尼亚人空间形式
Totally umbilical submanifolds in pseudo-Riemannian space forms
论文作者
论文摘要
伪里曼尼亚语歧管中的一个完全脐带的次源是一个基本概念,其特征是第二种基本形式与度量标准成正比的条件。这也是完全大地测量submanifold的概念的概括。在本文中,我们对非载体伪里人的空间形式的完整完全脐带亚策略进行了分类,并考虑其模量空间。结果,我们表明,在空间形式之间存在等距浸入的一些模量空间,而恒定曲率之一是非Hausdorff。
A totally umbilical submanifold in pseudo-Riemannian manifolds is a fundamental notion, which is characterized by the condition that the second fundamental form is proportional to the metric. It is also a generalization of the notion of a totally geodesic submanifold. In this paper, we classify congruent classes of full totally umbilical submanifolds in non-flat pseudo-Riemannian space forms, and consider their moduli spaces. As a consequence, we show that some moduli spaces of isometric immersions between space forms which one of the same constant curvature are non-Hausdorff.